Ultrasound-Targeted Microbubble Destruction Delivery of Insulin-Like Growth Factor 1 cDNA and Transforming Growth Factor Beta Short Hairpin RNA Enhances Tendon Regeneration and Inhibits Scar Formation In Vivo.

Q1 Medicine
Human Gene Therapy Clinical Development Pub Date : 2018-12-01 Epub Date: 2018-10-25 DOI:10.1089/humc.2018.121
Xi Xiang, Qianying Leng, Yuanjiao Tang, Liyun Wang, Jianbo Huang, Yi Zhang, Li Qiu
{"title":"Ultrasound-Targeted Microbubble Destruction Delivery of Insulin-Like Growth Factor 1 cDNA and Transforming Growth Factor Beta Short Hairpin RNA Enhances Tendon Regeneration and Inhibits Scar Formation In Vivo.","authors":"Xi Xiang,&nbsp;Qianying Leng,&nbsp;Yuanjiao Tang,&nbsp;Liyun Wang,&nbsp;Jianbo Huang,&nbsp;Yi Zhang,&nbsp;Li Qiu","doi":"10.1089/humc.2018.121","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound-targeted microbubble destruction (UTMD), which has been successfully used for the treatment of many diseases, offers a promising noninvasive approach for target-specific gene delivery. This study investigated the UTMD delivery of insulin-like growth factor 1 (IGF-1) cDNA and transforming growth factor beta (TGF-β) short hairpin RNA for Achilles tendon injury in rats. Briefly, 168 rats with an injured Achilles tendon were randomly divided into seven groups: (1) IGF-1 + UTMD, (2) TGF-β + UTMD, (3) IGF-1 + TGF-β + UTMD, (4) control, (5) IGF-1, (6) TGF-β, and (7) IGF-1 + TGF-β. At 2, 4, 8, and 12 weeks post treatment, six rats from each group were euthanized. IGF-1 expression and TGF-β expression were evaluated using an adhesion index score, pathological examination, quantitative real-time reverse transcription polymerase chain reaction, Western blotting, and biomechanical measurement. The lowest adhesion index score, the lightest inflammation, the highest 4,6-diamidino-2-phenylindole nuclear counter signals, the highest IGF-1 expression, and the lowest TGF-β expression were observed in group 3 (p < 0.05). Furthermore, higher expression of IGF-1 mRNA was observed in groups 1 and 3, while lower expression of TGF-β mRNA was observed in groups 2 and 3 (p < 0.05). The UTMD groups showed a higher transfection efficiency than the groups without UTMD. Downregulation of type III collagen and upregulation of type I collagen were observed in groups 1-3. Moreover, during weeks 4, 8, and 12, greater maximum load and tensile stress were observed in group 3 compared to the other groups (p < 0.05), while the highest tendon stiffness was observed in week 12 (p < 0.05). To conclude, the results suggest that UTMD delivery of IGF-1 and TGF-β offers a promising treatment approach for tendon injury in vivo.</p>","PeriodicalId":51315,"journal":{"name":"Human Gene Therapy Clinical Development","volume":"29 4","pages":"198-213"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/humc.2018.121","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Clinical Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/humc.2018.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5

Abstract

Ultrasound-targeted microbubble destruction (UTMD), which has been successfully used for the treatment of many diseases, offers a promising noninvasive approach for target-specific gene delivery. This study investigated the UTMD delivery of insulin-like growth factor 1 (IGF-1) cDNA and transforming growth factor beta (TGF-β) short hairpin RNA for Achilles tendon injury in rats. Briefly, 168 rats with an injured Achilles tendon were randomly divided into seven groups: (1) IGF-1 + UTMD, (2) TGF-β + UTMD, (3) IGF-1 + TGF-β + UTMD, (4) control, (5) IGF-1, (6) TGF-β, and (7) IGF-1 + TGF-β. At 2, 4, 8, and 12 weeks post treatment, six rats from each group were euthanized. IGF-1 expression and TGF-β expression were evaluated using an adhesion index score, pathological examination, quantitative real-time reverse transcription polymerase chain reaction, Western blotting, and biomechanical measurement. The lowest adhesion index score, the lightest inflammation, the highest 4,6-diamidino-2-phenylindole nuclear counter signals, the highest IGF-1 expression, and the lowest TGF-β expression were observed in group 3 (p < 0.05). Furthermore, higher expression of IGF-1 mRNA was observed in groups 1 and 3, while lower expression of TGF-β mRNA was observed in groups 2 and 3 (p < 0.05). The UTMD groups showed a higher transfection efficiency than the groups without UTMD. Downregulation of type III collagen and upregulation of type I collagen were observed in groups 1-3. Moreover, during weeks 4, 8, and 12, greater maximum load and tensile stress were observed in group 3 compared to the other groups (p < 0.05), while the highest tendon stiffness was observed in week 12 (p < 0.05). To conclude, the results suggest that UTMD delivery of IGF-1 and TGF-β offers a promising treatment approach for tendon injury in vivo.

超声靶向微泡破坏传递胰岛素样生长因子1 cDNA和转化生长因子β短发夹RNA促进肌腱再生并抑制体内瘢痕形成
超声靶向微泡破坏(UTMD)已成功用于多种疾病的治疗,为靶向基因传递提供了一种有前途的无创方法。本研究探讨胰岛素样生长因子1 (IGF-1) cDNA和转化生长因子β (TGF-β)短发夹RNA在大鼠跟腱损伤中的UTMD传递。将168只跟腱损伤大鼠随机分为7组:(1)IGF-1 + UTMD, (2) TGF-β + UTMD, (3) IGF-1 + TGF-β + UTMD,(4)对照,(5)IGF-1, (6) TGF-β, (7) IGF-1 + TGF-β。在治疗后2、4、8和12周,每组6只大鼠实施安乐死。采用粘附指数评分、病理检查、实时定量逆转录聚合酶链反应、Western blotting和生物力学测量来评估IGF-1和TGF-β的表达。第3组黏附指数评分最低,炎症反应最轻,4,6-二氨基-2-苯基吲哚核计数信号最高,IGF-1表达最高,TGF-β表达最低(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Gene Therapy Clinical Development
Human Gene Therapy Clinical Development CRITICAL CARE MEDICINEMEDICINE, RESEARCH &-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
7.20
自引率
0.00%
发文量
0
期刊介绍: Human Gene Therapy (HGT) is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes important advances in DNA, RNA, cell and immune therapies, validating the latest advances in research and new technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信