WEAKLY SUPERVISED FOOD IMAGE SEGMENTATION USING CLASS ACTIVATION MAPS.

Yu Wang, Fengqing Zhu, Carol J Boushey, Edward J Delp
{"title":"WEAKLY SUPERVISED FOOD IMAGE SEGMENTATION USING CLASS ACTIVATION MAPS.","authors":"Yu Wang, Fengqing Zhu, Carol J Boushey, Edward J Delp","doi":"10.1109/ICIP.2017.8296487","DOIUrl":null,"url":null,"abstract":"<p><p>Food image segmentation plays a crucial role in image-based dietary assessment and management. Successful methods for object segmentation generally rely on a large amount of labeled data on the pixel level. However, such training data are not yet available for food images and expensive to obtain. In this paper, we describe a weakly supervised convolutional neural network (CNN) which only requires image level annotation. We propose a graph based segmentation method which uses the class activation maps trained on food datasets as a top-down saliency model. We evaluate the proposed method for both classification and segmentation tasks. We achieve competitive classification accuracy compared to the previously reported results.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2017 ","pages":"1277-1281"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226049/pdf/nihms-995023.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Food image segmentation plays a crucial role in image-based dietary assessment and management. Successful methods for object segmentation generally rely on a large amount of labeled data on the pixel level. However, such training data are not yet available for food images and expensive to obtain. In this paper, we describe a weakly supervised convolutional neural network (CNN) which only requires image level annotation. We propose a graph based segmentation method which uses the class activation maps trained on food datasets as a top-down saliency model. We evaluate the proposed method for both classification and segmentation tasks. We achieve competitive classification accuracy compared to the previously reported results.

Abstract Image

Abstract Image

使用类激活映射的弱监督食物图像分割。
食物图像分割在基于图像的饮食评估和管理中起着至关重要的作用。成功的对象分割方法通常依赖于像素级别上的大量标记数据。然而,这样的训练数据还不能用于食物图像,并且获取成本很高。在本文中,我们描述了一种只需要图像级注释的弱监督卷积神经网络(CNN)。我们提出了一种基于图的分割方法,该方法使用在食物数据集上训练的类激活图作为自上而下的显著性模型。我们对所提出的分类和分割任务的方法进行了评估。与之前报道的结果相比,我们实现了具有竞争力的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信