{"title":"Number systems over orders.","authors":"Attila Pethő, Jörg Thuswaldner","doi":"10.1007/s00605-018-1191-x","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mi>K</mi></math> be a number field of degree <i>k</i> and let <math><mi>O</mi></math> be an order in <math><mi>K</mi></math> . A <i>generalized number system over</i> <math><mi>O</mi></math> (GNS for short) is a pair <math><mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> where <math><mrow><mi>p</mi> <mo>∈</mo> <mi>O</mi> <mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> </math> is monic and <math><mrow><mi>D</mi> <mo>⊂</mo> <mi>O</mi></mrow> </math> is a complete residue system modulo <i>p</i>(0) containing 0. If each <math><mrow><mi>a</mi> <mo>∈</mo> <mi>O</mi> <mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> </math> admits a representation of the form <math><mrow><mi>a</mi> <mo>≡</mo> <msubsup><mo>∑</mo> <mrow><mi>j</mi> <mo>=</mo> <mn>0</mn></mrow> <mrow><mi>ℓ</mi> <mo>-</mo> <mn>1</mn></mrow> </msubsup> <msub><mi>d</mi> <mi>j</mi></msub> <msup><mi>x</mi> <mi>j</mi></msup> <mspace></mspace> <mrow><mo>(</mo> <mo>mod</mo> <mspace></mspace> <mi>p</mi> <mo>)</mo></mrow> </mrow> </math> with <math><mrow><mi>ℓ</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> and <math> <mrow><msub><mi>d</mi> <mn>0</mn></msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>d</mi> <mrow><mi>ℓ</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <mo>∈</mo> <mi>D</mi></mrow> </math> then the GNS <math><mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> is said to have the <i>finiteness property</i>. To a given fundamental domain <math><mi>F</mi></math> of the action of <math> <msup><mrow><mi>Z</mi></mrow> <mi>k</mi></msup> </math> on <math> <msup><mrow><mi>R</mi></mrow> <mi>k</mi></msup> </math> we associate a class <math> <mrow><msub><mi>G</mi> <mi>F</mi></msub> <mo>:</mo> <mo>=</mo> <mrow><mo>{</mo> <mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <msub><mi>D</mi> <mi>F</mi></msub> <mo>)</mo></mrow> <mspace></mspace> <mo>:</mo> <mspace></mspace> <mi>p</mi> <mo>∈</mo> <mi>O</mi> <mrow><mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> <mo>}</mo></mrow> </mrow> </math> of GNS whose digit sets <math><msub><mi>D</mi> <mi>F</mi></msub> </math> are defined in terms of <math><mi>F</mi></math> in a natural way. We are able to prove general results on the finiteness property of GNS in <math><msub><mi>G</mi> <mi>F</mi></msub> </math> by giving an abstract version of the well-known \"dominant condition\" on the absolute coefficient <i>p</i>(0) of <i>p</i>. In particular, depending on mild conditions on the topology of <math><mi>F</mi></math> we characterize the finiteness property of <math><mrow><mo>(</mo> <mi>p</mi> <mrow><mo>(</mo> <mi>x</mi> <mo>±</mo> <mi>m</mi> <mo>)</mo></mrow> <mo>,</mo> <msub><mi>D</mi> <mi>F</mi></msub> <mo>)</mo></mrow> </math> for fixed <i>p</i> and large <math><mrow><mi>m</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> . Using our new theory, we are able to give general results on the connection between power integral bases of number fields and GNS.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-018-1191-x","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-018-1191-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Let be a number field of degree k and let be an order in . A generalized number system over (GNS for short) is a pair where is monic and is a complete residue system modulo p(0) containing 0. If each admits a representation of the form with and then the GNS is said to have the finiteness property. To a given fundamental domain of the action of on we associate a class of GNS whose digit sets are defined in terms of in a natural way. We are able to prove general results on the finiteness property of GNS in by giving an abstract version of the well-known "dominant condition" on the absolute coefficient p(0) of p. In particular, depending on mild conditions on the topology of we characterize the finiteness property of for fixed p and large . Using our new theory, we are able to give general results on the connection between power integral bases of number fields and GNS.
设K是K次的数字域设O是K的一个阶。O上的广义数系统(简称GNS)是一对(p, D),其中p∈O [x]是单调的,D∧O是模p(0)中包含0的完全剩数系统。如果每个a∈O [x]允许a≡∑j = 0 r - 1 d j x j (mod p),其中r∈N, d 0,…,d r r - 1∈d,则GNS (p, d)具有有限性。对于给定的zk作用于rk的基本定义域F,我们联想到一类GNS的G F: = {(p, df): p∈O [x]},其数字集df是用F以自然的方式定义的。通过给出关于p的绝对系数p(0)的众所周知的“优势条件”的抽象版本,我们能够证明gf中GNS有限性质的一般结果。特别是,根据F拓扑的温和条件,我们表征了(p(x±m), df)对于固定p和大m∈N的有限性质。利用我们的新理论,我们能够给出关于数域的幂积分基与GNS之间联系的一般结果。