{"title":"Extended methods for influence maximization in dynamic networks.","authors":"Tsuyoshi Murata, Hokuto Koga","doi":"10.1186/s40649-018-0056-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The process of rumor spreading among people can be represented as information diffusion in social network. The scale of rumor spread changes greatly depending on starting nodes. If we can select nodes that contribute to large-scale diffusion, the nodes are expected to be important for viral marketing. Given a network and the size of the starting nodes, the problem of selecting nodes for maximizing information diffusion is called influence maximization problem.</p><p><strong>Methods: </strong>We propose three new approximation methods (Dynamic Degree Discount, Dynamic CI, and Dynamic RIS) for influence maximization problem in dynamic networks. These methods are the extensions of previous methods for static networks to dynamic networks.</p><p><strong>Results: </strong>When compared with the previous methods, MC Greedy and Osawa, our proposed methods were found better than the previous methods: Although the performance of MC greedy was better than the three methods, it was computationally expensive and intractable for large-scale networks. The computational time of our proposed methods was more than 10 times faster than MC greedy, so they can be computed in realistic time even for large-scale dynamic networks. When compared with Osawa, the performances of these three methods were almost the same as Osawa, but they were approximately 7.8 times faster than Osawa.</p><p><strong>Conclusions: </strong>Based on these facts, the proposed methods are suitable for influence maximization in dynamic networks. Finding the strategies of choosing a suitable method for a given dynamic network is practically important. It is a challenging open question and is left for our future work. The problem of adjusting the parameters for Dynamic CI and Dynamic RIS is also left for our future work.</p>","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"5 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40649-018-0056-8","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-018-0056-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 18
Abstract
Background: The process of rumor spreading among people can be represented as information diffusion in social network. The scale of rumor spread changes greatly depending on starting nodes. If we can select nodes that contribute to large-scale diffusion, the nodes are expected to be important for viral marketing. Given a network and the size of the starting nodes, the problem of selecting nodes for maximizing information diffusion is called influence maximization problem.
Methods: We propose three new approximation methods (Dynamic Degree Discount, Dynamic CI, and Dynamic RIS) for influence maximization problem in dynamic networks. These methods are the extensions of previous methods for static networks to dynamic networks.
Results: When compared with the previous methods, MC Greedy and Osawa, our proposed methods were found better than the previous methods: Although the performance of MC greedy was better than the three methods, it was computationally expensive and intractable for large-scale networks. The computational time of our proposed methods was more than 10 times faster than MC greedy, so they can be computed in realistic time even for large-scale dynamic networks. When compared with Osawa, the performances of these three methods were almost the same as Osawa, but they were approximately 7.8 times faster than Osawa.
Conclusions: Based on these facts, the proposed methods are suitable for influence maximization in dynamic networks. Finding the strategies of choosing a suitable method for a given dynamic network is practically important. It is a challenging open question and is left for our future work. The problem of adjusting the parameters for Dynamic CI and Dynamic RIS is also left for our future work.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.