Online Process Phase Detection Using Multimodal Deep Learning.

Xinyu Li, Yanyi Zhang, Mengzhu Li, Shuhong Chen, Farneth R Austin, Ivan Marsic, Randall S Burd
{"title":"Online Process Phase Detection Using Multimodal Deep Learning.","authors":"Xinyu Li,&nbsp;Yanyi Zhang,&nbsp;Mengzhu Li,&nbsp;Shuhong Chen,&nbsp;Farneth R Austin,&nbsp;Ivan Marsic,&nbsp;Randall S Burd","doi":"10.1109/UEMCON.2016.7777912","DOIUrl":null,"url":null,"abstract":"<p><p>We present a multimodal deep-learning structure that automatically predicts phases of the trauma resuscitation process in real-time. The system first pre-processes the audio and video streams captured by a Kinect's built-in microphone array and depth sensor. A multimodal deep learning structure then extracts video and audio features, which are later combined through a \"slow fusion\" model. The final decision is then made from the combined features through a modified softmax classification layer. The model was trained on 20 trauma resuscitation cases (>13 hours), and was tested on 5 other cases. Our results showed over 80% online detection accuracy with 0.7 F-Score, outperforming previous systems.</p>","PeriodicalId":92155,"journal":{"name":"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/UEMCON.2016.7777912","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON.2016.7777912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We present a multimodal deep-learning structure that automatically predicts phases of the trauma resuscitation process in real-time. The system first pre-processes the audio and video streams captured by a Kinect's built-in microphone array and depth sensor. A multimodal deep learning structure then extracts video and audio features, which are later combined through a "slow fusion" model. The final decision is then made from the combined features through a modified softmax classification layer. The model was trained on 20 trauma resuscitation cases (>13 hours), and was tested on 5 other cases. Our results showed over 80% online detection accuracy with 0.7 F-Score, outperforming previous systems.

Abstract Image

Abstract Image

Abstract Image

使用多模态深度学习的在线过程阶段检测。
我们提出了一种多模态深度学习结构,可以实时自动预测创伤复苏过程的各个阶段。该系统首先对Kinect内置麦克风阵列和深度传感器捕获的音频和视频流进行预处理。然后,多模态深度学习结构提取视频和音频特征,然后通过“慢融合”模型将其组合在一起。然后通过改进的softmax分类层从组合的特征中做出最终决定。该模型对20例>13小时的创伤复苏病例进行了训练,并对另外5例进行了测试。我们的结果显示,在线检测准确率超过80%,F-Score为0.7,优于以前的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信