Ben Allwein, Christina Kelly, Shaima Kammoonah, Thibault Mayor, Dale M Cameron
{"title":"Prion-dependent proteome remodeling in response to environmental stress is modulated by prion variant and genetic background.","authors":"Ben Allwein, Christina Kelly, Shaima Kammoonah, Thibault Mayor, Dale M Cameron","doi":"10.1080/19336896.2019.1583041","DOIUrl":null,"url":null,"abstract":"<p><p>A number of fungal proteins are capable of adopting multiple alternative, self-perpetuating prion conformations. These prion variants are associated with functional alterations of the prion-forming protein and thus the generation of new, heritable traits that can be detrimental or beneficial. Here we sought to determine the extent to which the previously-reported ZnCl<sub>2</sub>-sensitivity trait of yeast harboring the [PSI<sup>+</sup>] prion is modulated by genetic background and prion variant, and whether this trait is accompanied by prion-dependent proteomic changes that could illuminate its physiological basis. We also examined the degree to which prion variant and genetic background influence other prion-dependent phenotypes. We found that ZnCl<sub>2</sub> exposure not only reduces colony growth but also limits chronological lifespan of [PSI<sup>+</sup>] relative to [psi<sup>-</sup>] cells. This reduction in viability was observed for multiple prion variants in both the S288C and W303 genetic backgrounds. Quantitative proteomic analysis revealed that under exposure to ZnCl<sub>2</sub> the expression of stress response proteins was elevated and the expression of proteins involved in energy metabolism was reduced in [PSI<sup>+</sup>] relative to [psi<sup>-</sup>] cells. These results suggest that cellular stress and slowed growth underlie the phenotypes we observed. More broadly, we found that prion variant and genetic background modulate prion-dependent changes in protein abundance and can profoundly impact viability in diverse environments. Thus, access to a constellation of prion variants combined with the accumulation of genetic variation together have the potential to substantially increase phenotypic diversity within a yeast population, and therefore to enhance its adaptation potential in changing environmental conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336896.2019.1583041","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336896.2019.1583041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
A number of fungal proteins are capable of adopting multiple alternative, self-perpetuating prion conformations. These prion variants are associated with functional alterations of the prion-forming protein and thus the generation of new, heritable traits that can be detrimental or beneficial. Here we sought to determine the extent to which the previously-reported ZnCl2-sensitivity trait of yeast harboring the [PSI+] prion is modulated by genetic background and prion variant, and whether this trait is accompanied by prion-dependent proteomic changes that could illuminate its physiological basis. We also examined the degree to which prion variant and genetic background influence other prion-dependent phenotypes. We found that ZnCl2 exposure not only reduces colony growth but also limits chronological lifespan of [PSI+] relative to [psi-] cells. This reduction in viability was observed for multiple prion variants in both the S288C and W303 genetic backgrounds. Quantitative proteomic analysis revealed that under exposure to ZnCl2 the expression of stress response proteins was elevated and the expression of proteins involved in energy metabolism was reduced in [PSI+] relative to [psi-] cells. These results suggest that cellular stress and slowed growth underlie the phenotypes we observed. More broadly, we found that prion variant and genetic background modulate prion-dependent changes in protein abundance and can profoundly impact viability in diverse environments. Thus, access to a constellation of prion variants combined with the accumulation of genetic variation together have the potential to substantially increase phenotypic diversity within a yeast population, and therefore to enhance its adaptation potential in changing environmental conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.