Syntactic Patterns Improve Information Extraction for Medical Search.

Roma Patel, Yinfei Yang, Iain Marshall, Ani Nenkova, Byron C Wallace
{"title":"Syntactic Patterns Improve Information Extraction for Medical Search.","authors":"Roma Patel,&nbsp;Yinfei Yang,&nbsp;Iain Marshall,&nbsp;Ani Nenkova,&nbsp;Byron C Wallace","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Medical professionals search the published literature by specifying the type of <i>patients</i>, the medical <i>intervention(s)</i> and the <i>outcome</i> measure(s) of interest. In this paper we demonstrate how features encoding syntactic patterns improve the performance of state-of-the-art sequence tagging models (both linear and neural) for information extraction of these medically relevant categories. We present an analysis of the type of patterns exploited, and the semantic space induced for these, i.e., the distributed representations learned for identified multi-token patterns. We show that these learned representations differ substantially from those of the constituent unigrams, suggesting that the patterns capture contextual information that is otherwise lost.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2018 Short Paper","pages":"371-377"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174535/pdf/nihms-988061.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical professionals search the published literature by specifying the type of patients, the medical intervention(s) and the outcome measure(s) of interest. In this paper we demonstrate how features encoding syntactic patterns improve the performance of state-of-the-art sequence tagging models (both linear and neural) for information extraction of these medically relevant categories. We present an analysis of the type of patterns exploited, and the semantic space induced for these, i.e., the distributed representations learned for identified multi-token patterns. We show that these learned representations differ substantially from those of the constituent unigrams, suggesting that the patterns capture contextual information that is otherwise lost.

Abstract Image

语法模式改进医学搜索的信息提取。
医学专业人员通过指定患者类型、医疗干预和感兴趣的结果测量来搜索已发表的文献。在本文中,我们展示了特征编码语法模式如何提高最先进的序列标记模型(线性和神经)的性能,用于这些医学相关类别的信息提取。我们分析了被利用的模式类型,以及为这些模式诱导的语义空间,即为识别的多标记模式学习的分布式表示。我们发现,这些学习到的表征与那些组成单字图的表征有很大的不同,这表明这些模式捕捉了否则会丢失的上下文信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信