{"title":"Cochlear connexin 30 homomeric and heteromeric channels exhibit distinct assembly mechanisms","authors":"Jean Defourny, Nicolas Thelen, Marc Thiry","doi":"10.1016/j.mod.2018.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Many of the mutations in <em>GJB2</em> and <em>GJB6</em>, which encode connexins 26 and 30 (Cx26 and Cx30), impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. In cochlear non-sensory supporting cells, Cx26 and Cx30 form two types of homomeric and heteromeric gap junctions. The biogenesis processes of these channels occurring <em>in situ</em> remain largely unknown. Here we show that Cx30 homomeric and Cx26/Cx30 heteromeric gap junctions exhibit distinct assembly mechanisms in the cochlea. When expressed as homomeric channels, Cx30 preferentially interacts with β-actin in the peripheral non-junctional membrane region, called perinexus, and strongly relies on the actin network for gap junction plaque assembly. In contrast, we found that Cx26/Cx30 heteromeric gap junction plaques are devoid of perinexus and associated actin network, and resist to actin-depolymerizating drug. This supports that Cx26/Cx30 oligomers could be directly delivered from the interior of the cell to the junctional plaque. Altogether, our data provide a novel insight in homomeric and heteromeric gap junction plaque assembly in the cochlea.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"155 ","pages":"Pages 8-14"},"PeriodicalIF":2.6000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.10.001","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318301436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 14
Abstract
Many of the mutations in GJB2 and GJB6, which encode connexins 26 and 30 (Cx26 and Cx30), impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. In cochlear non-sensory supporting cells, Cx26 and Cx30 form two types of homomeric and heteromeric gap junctions. The biogenesis processes of these channels occurring in situ remain largely unknown. Here we show that Cx30 homomeric and Cx26/Cx30 heteromeric gap junctions exhibit distinct assembly mechanisms in the cochlea. When expressed as homomeric channels, Cx30 preferentially interacts with β-actin in the peripheral non-junctional membrane region, called perinexus, and strongly relies on the actin network for gap junction plaque assembly. In contrast, we found that Cx26/Cx30 heteromeric gap junction plaques are devoid of perinexus and associated actin network, and resist to actin-depolymerizating drug. This supports that Cx26/Cx30 oligomers could be directly delivered from the interior of the cell to the junctional plaque. Altogether, our data provide a novel insight in homomeric and heteromeric gap junction plaque assembly in the cochlea.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.