Fahd Albinali, Stephen S Intille, William Haskell, Mary Rosenberger
{"title":"Using Wearable Activity Type Detection to Improve Physical Activity Energy Expenditure Estimation.","authors":"Fahd Albinali, Stephen S Intille, William Haskell, Mary Rosenberger","doi":"10.1145/1864349.1864396","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate, real-time measurement of energy expended during everyday activities would enable development of novel health monitoring and wellness technologies. A technique using three miniature wearable accelerometers is presented that improves upon state-of-the-art energy expenditure (EE) estimation. On a dataset acquired from 24 subjects performing gym and household activities, we demonstrate how knowledge of activity type, which can be automatically inferred from the accelerometer data, can improve EE estimates by more than 15% when compared to the best estimates from other methods.</p>","PeriodicalId":90688,"journal":{"name":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","volume":"2010 ","pages":"311-320"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122605/pdf/nihms-986870.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1864349.1864396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate, real-time measurement of energy expended during everyday activities would enable development of novel health monitoring and wellness technologies. A technique using three miniature wearable accelerometers is presented that improves upon state-of-the-art energy expenditure (EE) estimation. On a dataset acquired from 24 subjects performing gym and household activities, we demonstrate how knowledge of activity type, which can be automatically inferred from the accelerometer data, can improve EE estimates by more than 15% when compared to the best estimates from other methods.