Using Wearable Activity Type Detection to Improve Physical Activity Energy Expenditure Estimation.

Fahd Albinali, Stephen S Intille, William Haskell, Mary Rosenberger
{"title":"Using Wearable Activity Type Detection to Improve Physical Activity Energy Expenditure Estimation.","authors":"Fahd Albinali, Stephen S Intille, William Haskell, Mary Rosenberger","doi":"10.1145/1864349.1864396","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate, real-time measurement of energy expended during everyday activities would enable development of novel health monitoring and wellness technologies. A technique using three miniature wearable accelerometers is presented that improves upon state-of-the-art energy expenditure (EE) estimation. On a dataset acquired from 24 subjects performing gym and household activities, we demonstrate how knowledge of activity type, which can be automatically inferred from the accelerometer data, can improve EE estimates by more than 15% when compared to the best estimates from other methods.</p>","PeriodicalId":90688,"journal":{"name":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","volume":"2010 ","pages":"311-320"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122605/pdf/nihms-986870.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1864349.1864396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate, real-time measurement of energy expended during everyday activities would enable development of novel health monitoring and wellness technologies. A technique using three miniature wearable accelerometers is presented that improves upon state-of-the-art energy expenditure (EE) estimation. On a dataset acquired from 24 subjects performing gym and household activities, we demonstrate how knowledge of activity type, which can be automatically inferred from the accelerometer data, can improve EE estimates by more than 15% when compared to the best estimates from other methods.

Abstract Image

Abstract Image

Abstract Image

利用可穿戴活动类型检测改进体育活动能量消耗估算。
对日常活动中消耗的能量进行精确、实时的测量,将有助于开发新型健康监测和保健技术。本文介绍了一种使用三个微型可穿戴加速度计的技术,该技术改进了最先进的能量消耗(EE)估算方法。在一个从 24 名进行健身和家务活动的受试者处获得的数据集上,我们展示了如何通过加速度计数据自动推断出活动类型,从而将能量消耗估算值与其他方法的最佳估算值相比提高 15%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信