Yves Frank, Tomas Hruz, Thomas Tschager, Valentin Venzin
{"title":"Improved de novo peptide sequencing using LC retention time information.","authors":"Yves Frank, Tomas Hruz, Thomas Tschager, Valentin Venzin","doi":"10.1186/s13015-018-0132-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Liquid chromatography combined with tandem mass spectrometry is an important tool in proteomics for peptide identification. Liquid chromatography temporally separates the peptides in a sample. The peptides that elute one after another are analyzed via tandem mass spectrometry by measuring the mass-to-charge ratio of a peptide and its fragments. De novo peptide sequencing is the problem of reconstructing the amino acid sequences of a peptide from this measurement data. Past de novo sequencing algorithms solely consider the mass spectrum of the fragments for reconstructing a sequence.</p><p><strong>Results: </strong>We propose to additionally exploit the information obtained from liquid chromatography. We study the problem of computing a sequence that is not only in accordance with the experimental mass spectrum, but also with the chromatographic retention time. We consider three models for predicting the retention time and develop algorithms for de novo sequencing for each model.</p><p><strong>Conclusions: </strong>Based on an evaluation for two prediction models on experimental data from synthesized peptides we conclude that the identification rates are improved by exploiting the chromatographic information. In our evaluation, we compare our algorithms using the retention time information with algorithms using the same scoring model, but not the retention time.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"13 ","pages":"14"},"PeriodicalIF":1.5000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13015-018-0132-5","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-018-0132-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Liquid chromatography combined with tandem mass spectrometry is an important tool in proteomics for peptide identification. Liquid chromatography temporally separates the peptides in a sample. The peptides that elute one after another are analyzed via tandem mass spectrometry by measuring the mass-to-charge ratio of a peptide and its fragments. De novo peptide sequencing is the problem of reconstructing the amino acid sequences of a peptide from this measurement data. Past de novo sequencing algorithms solely consider the mass spectrum of the fragments for reconstructing a sequence.
Results: We propose to additionally exploit the information obtained from liquid chromatography. We study the problem of computing a sequence that is not only in accordance with the experimental mass spectrum, but also with the chromatographic retention time. We consider three models for predicting the retention time and develop algorithms for de novo sequencing for each model.
Conclusions: Based on an evaluation for two prediction models on experimental data from synthesized peptides we conclude that the identification rates are improved by exploiting the chromatographic information. In our evaluation, we compare our algorithms using the retention time information with algorithms using the same scoring model, but not the retention time.
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.