Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in Systems Biology.

Sanjana Gupta, Liam Hainsworth, Justin S Hogg, Robin E C Lee, James R Faeder
{"title":"Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in Systems Biology.","authors":"Sanjana Gupta,&nbsp;Liam Hainsworth,&nbsp;Justin S Hogg,&nbsp;Robin E C Lee,&nbsp;James R Faeder","doi":"10.1109/PDP2018.2018.00114","DOIUrl":null,"url":null,"abstract":"<p><p>Models of biological systems often have many unknown parameters that must be determined in order for model behavior to match experimental observations. Commonly-used methods for parameter estimation that return point estimates of the best-fit parameters are insufficient when models are high dimensional and under-constrained. As a result, Bayesian methods, which treat model parameters as random variables and attempt to estimate their probability distributions given data, have become popular in systems biology. Bayesian parameter estimation often relies on Markov Chain Monte Carlo (MCMC) methods to sample model parameter distributions, but the slow convergence of MCMC sampling can be a major bottleneck. One approach to improving performance is parallel tempering (PT), a physics-based method that uses swapping between multiple Markov chains run in parallel at different temperatures to accelerate sampling. The temperature of a Markov chain determines the probability of accepting an unfavorable move, so swapping with higher temperatures chains enables the sampling chain to escape from local minima. In this work we compared the MCMC performance of PT and the commonly-used Metropolis-Hastings (MH) algorithm on six biological models of varying complexity. We found that for simpler models PT accelerated convergence and sampling, and that for more complex models, PT often converged in cases MH became trapped in non-optimal local minima. We also developed a freely-available MATLAB package for Bayesian parameter estimation called PTEMPEST (http://github.com/RuleWorld/ptempest), which is closely integrated with the popular BioNetGen software for rule-based modeling of biological systems.</p>","PeriodicalId":92432,"journal":{"name":"Proceedings. Euromicro International Conference on Parallel, Distributed, and Network-based Processing","volume":"2018 ","pages":"690-697"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/PDP2018.2018.00114","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Euromicro International Conference on Parallel, Distributed, and Network-based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP2018.2018.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Models of biological systems often have many unknown parameters that must be determined in order for model behavior to match experimental observations. Commonly-used methods for parameter estimation that return point estimates of the best-fit parameters are insufficient when models are high dimensional and under-constrained. As a result, Bayesian methods, which treat model parameters as random variables and attempt to estimate their probability distributions given data, have become popular in systems biology. Bayesian parameter estimation often relies on Markov Chain Monte Carlo (MCMC) methods to sample model parameter distributions, but the slow convergence of MCMC sampling can be a major bottleneck. One approach to improving performance is parallel tempering (PT), a physics-based method that uses swapping between multiple Markov chains run in parallel at different temperatures to accelerate sampling. The temperature of a Markov chain determines the probability of accepting an unfavorable move, so swapping with higher temperatures chains enables the sampling chain to escape from local minima. In this work we compared the MCMC performance of PT and the commonly-used Metropolis-Hastings (MH) algorithm on six biological models of varying complexity. We found that for simpler models PT accelerated convergence and sampling, and that for more complex models, PT often converged in cases MH became trapped in non-optimal local minima. We also developed a freely-available MATLAB package for Bayesian parameter estimation called PTEMPEST (http://github.com/RuleWorld/ptempest), which is closely integrated with the popular BioNetGen software for rule-based modeling of biological systems.

Abstract Image

Abstract Image

Abstract Image

系统生物学中并行回火加速贝叶斯参数估计的评价。
生物系统的模型通常有许多未知的参数,为了使模型行为与实验观察相匹配,必须确定这些参数。在高维欠约束模型中,常用的参数估计方法对最佳拟合参数的回归点估计不足。因此,将模型参数视为随机变量并试图估计给定数据的概率分布的贝叶斯方法在系统生物学中变得流行。贝叶斯参数估计通常依赖于马尔可夫链蒙特卡罗(MCMC)方法对模型参数分布进行采样,但MCMC采样速度慢是一个主要瓶颈。提高性能的一种方法是并行回火(PT),这是一种基于物理的方法,使用在不同温度下并行运行的多个马尔可夫链之间进行交换来加速采样。马尔可夫链的温度决定了接受不利移动的概率,因此与温度更高的链交换可以使采样链摆脱局部最小值。在这项工作中,我们比较了PT和常用的Metropolis-Hastings (MH)算法在六种不同复杂性的生物模型上的MCMC性能。我们发现,对于较简单的模型,PT加速了收敛和采样,而对于较复杂的模型,当MH陷入非最优局部极小值时,PT往往收敛。我们还开发了一个免费的MATLAB包,用于贝叶斯参数估计,称为PTEMPEST (http://github.com/RuleWorld/ptempest),它与流行的BioNetGen软件紧密集成,用于基于规则的生物系统建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信