Khdejah S Hajeeassa, Mahmoud A Hussein, Yasir Anwar, Nada Y Tashkandi, Zahra M Al-Amshany
{"title":"Nanocomposites containing polyvinyl alcohol and reinforced carbon-based nanofiller: A super effective biologically active material.","authors":"Khdejah S Hajeeassa, Mahmoud A Hussein, Yasir Anwar, Nada Y Tashkandi, Zahra M Al-Amshany","doi":"10.1177/1849543518794818","DOIUrl":null,"url":null,"abstract":"<p><p>A new class of biologically active polymer nanocomposites based on polyvinyl alcohol and reinforced mixed graphene/carbon nanotube as carbon-based nanofillers with a general abbreviation (polyvinyl alcohol/mixed graphene-carbon nanotubes) has been successfully synthesized by an efficient solution mixing method with the help of ultrasonic radiation. Mixed graphene and carbon nanotubes ratio has been prepared (50%:50%) wt by wt. Different loading of mixed graphene-carbon nanotubes (2, 5, 10, 15, and 20 wt%) were added to the host polyvinyl alcohol polymer. In this study, polyvinyl alcohol/mixed graphene-carbon nanotubes<sub>a-e</sub> nanocomposites were characterized and analyzed by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, and the thermal stability was measured by thermogravimetric analysis and derivative thermal gravimetric. Fourier transform infrared and X-ray diffraction spectra proved the addition of mixed graphene-carbon nanotubes into polyvinyl alcohol matrix. X-ray diffraction patterns for these nanocomposites showed 2<i>θ</i> = 19.35° and 40° due to the crystal nature of polyvinyl alcohol in addition to 2<i>θ</i> = 26.5° which attributed to the graphite plane of carbon-based nanofillers. Thermal stability of polyvinyl alcohol/mixed graphene-carbon nanotubes nanocomposites was enhanced comparing with pure polyvinyl alcohol. The main degradation step ranged between 360° and 450°C. Moreover, maximum composite degradation temperature has appeared at range from 285°C to 267°C and final composite degradation temperature (FCDT) displayed at a temperature range of 469-491°C. Antibacterial property of polyvinyl alcohol/mixed graphene-carbon nanotubes<sub>a-e</sub> nanocomposites were tested against <i>Escherichia coli</i> bacteria using the colony forming units technique. Results showed an improvement of antibacterial property. The rate percentages of polyvinyl alcohol/mixed graphene-carbon nanotubes<sub>b</sub>, polyvinyl alcohol/mixed graphene-carbon nanotubes<sub>c</sub>, and polyvinyl alcohol/mixed graphene-carbon nanotubes<sub>d</sub> nanocomposites after 24 h are 6%, 5%, and 7% respectively. However, polyvinyl alcohol/mixed graphene-carbon nanotubes<sub>e</sub> nanocomposite showed hyperactivity, where its reduction percentage remarkably raised up to 100% which is the highest inhibition rate percentage. In addition, polyvinyl alcohol and polyvinyl alcohol/graphene-carbon nanotubes<sub>a-d</sub> showed colony forming units values/ml 70 × 10<sup>6</sup> and 65 ± 2 × 10<sup>6</sup> after 12 h. After 24 h, the colony forming units values/ml were in the range of 86 × 10<sup>6</sup>-95 × 10<sup>6</sup>.</p>","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"5 ","pages":"1849543518794818"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1849543518794818","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1849543518794818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 19
Abstract
A new class of biologically active polymer nanocomposites based on polyvinyl alcohol and reinforced mixed graphene/carbon nanotube as carbon-based nanofillers with a general abbreviation (polyvinyl alcohol/mixed graphene-carbon nanotubes) has been successfully synthesized by an efficient solution mixing method with the help of ultrasonic radiation. Mixed graphene and carbon nanotubes ratio has been prepared (50%:50%) wt by wt. Different loading of mixed graphene-carbon nanotubes (2, 5, 10, 15, and 20 wt%) were added to the host polyvinyl alcohol polymer. In this study, polyvinyl alcohol/mixed graphene-carbon nanotubesa-e nanocomposites were characterized and analyzed by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, and the thermal stability was measured by thermogravimetric analysis and derivative thermal gravimetric. Fourier transform infrared and X-ray diffraction spectra proved the addition of mixed graphene-carbon nanotubes into polyvinyl alcohol matrix. X-ray diffraction patterns for these nanocomposites showed 2θ = 19.35° and 40° due to the crystal nature of polyvinyl alcohol in addition to 2θ = 26.5° which attributed to the graphite plane of carbon-based nanofillers. Thermal stability of polyvinyl alcohol/mixed graphene-carbon nanotubes nanocomposites was enhanced comparing with pure polyvinyl alcohol. The main degradation step ranged between 360° and 450°C. Moreover, maximum composite degradation temperature has appeared at range from 285°C to 267°C and final composite degradation temperature (FCDT) displayed at a temperature range of 469-491°C. Antibacterial property of polyvinyl alcohol/mixed graphene-carbon nanotubesa-e nanocomposites were tested against Escherichia coli bacteria using the colony forming units technique. Results showed an improvement of antibacterial property. The rate percentages of polyvinyl alcohol/mixed graphene-carbon nanotubesb, polyvinyl alcohol/mixed graphene-carbon nanotubesc, and polyvinyl alcohol/mixed graphene-carbon nanotubesd nanocomposites after 24 h are 6%, 5%, and 7% respectively. However, polyvinyl alcohol/mixed graphene-carbon nanotubese nanocomposite showed hyperactivity, where its reduction percentage remarkably raised up to 100% which is the highest inhibition rate percentage. In addition, polyvinyl alcohol and polyvinyl alcohol/graphene-carbon nanotubesa-d showed colony forming units values/ml 70 × 106 and 65 ± 2 × 106 after 12 h. After 24 h, the colony forming units values/ml were in the range of 86 × 106-95 × 106.
NanobiomedicineBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍:
Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.