Astromimetics: The dawn of a new era for (bio)materials science?

Q1 Engineering
Nanobiomedicine Pub Date : 2018-08-16 eCollection Date: 2018-01-01 DOI:10.1177/1849543518794345
Vuk Uskoković, Victoria M Wu
{"title":"Astromimetics: The dawn of a new era for (bio)materials science?","authors":"Vuk Uskoković,&nbsp;Victoria M Wu","doi":"10.1177/1849543518794345","DOIUrl":null,"url":null,"abstract":"<p><p>Composite, multifunctional fine particles are likely to be at the frontier of materials science in the foreseeable future. Here we present a submicron composite particle that mimics the stratified structure of the Earth by having a zero-valent iron core, a silicate/silicide mantle, and a thin carbonaceous crust resembling the biosphere and its biotic deposits. Particles were formulated in a stable colloidal form and made to interact with various types of healthy and cancer cells in vitro. A selective anticancer activity was observed, promising from the point of view of the intended use of the particles for tumor targeting across the blood-brain barrier. As an extension of the idea underlying the fabrication of a particle mimicking the planet Earth, we propose a new field of mimetics within materials science: astromimetics. The astromimetic approach in the context of materials science consists of the design of particles after the structure of celestial bodies. With Earth being the most chemically diverse and fertile out of all the astral bodies known, it is anticipated that the great majority of astromimetic material models will fall in the domain of geo-inspired ones.</p>","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"5 ","pages":"1849543518794345"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1849543518794345","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1849543518794345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Composite, multifunctional fine particles are likely to be at the frontier of materials science in the foreseeable future. Here we present a submicron composite particle that mimics the stratified structure of the Earth by having a zero-valent iron core, a silicate/silicide mantle, and a thin carbonaceous crust resembling the biosphere and its biotic deposits. Particles were formulated in a stable colloidal form and made to interact with various types of healthy and cancer cells in vitro. A selective anticancer activity was observed, promising from the point of view of the intended use of the particles for tumor targeting across the blood-brain barrier. As an extension of the idea underlying the fabrication of a particle mimicking the planet Earth, we propose a new field of mimetics within materials science: astromimetics. The astromimetic approach in the context of materials science consists of the design of particles after the structure of celestial bodies. With Earth being the most chemically diverse and fertile out of all the astral bodies known, it is anticipated that the great majority of astromimetic material models will fall in the domain of geo-inspired ones.

Abstract Image

Abstract Image

天体模拟学:(生物)材料科学新时代的曙光?
复合、多功能细颗粒很可能在可预见的未来成为材料科学的前沿。在这里,我们提出了一种亚微米复合粒子,通过具有零价铁核,硅酸盐/硅化物地幔和类似生物圈及其生物沉积物的薄碳质地壳来模拟地球的分层结构。颗粒以稳定的胶体形式配制,并在体外与各种类型的健康细胞和癌细胞相互作用。观察到一种选择性的抗癌活性,从预期使用颗粒跨越血脑屏障靶向肿瘤的角度来看,这是有希望的。作为模拟地球的粒子制造思想的延伸,我们在材料科学中提出了一个新的模拟领域:天体模拟。在材料科学的背景下,模拟天体的方法包括在天体结构之后设计粒子。由于地球是所有已知星体中化学成分最多样化和最肥沃的星体,预计绝大多数模拟天体材料模型将落在地球启发的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanobiomedicine
Nanobiomedicine Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍: Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信