ISAVS: Interactive Scalable Analysis and Visualization System.

Steve Petruzza, Aniketh Venkat, Attila Gyulassy, Giorgio Scorzelli, Valerio Pascucci, Frederick Federer, Alessandra Angelucci, Peer-Timo Bremer
{"title":"ISAVS: Interactive Scalable Analysis and Visualization System.","authors":"Steve Petruzza,&nbsp;Aniketh Venkat,&nbsp;Attila Gyulassy,&nbsp;Giorgio Scorzelli,&nbsp;Valerio Pascucci,&nbsp;Frederick Federer,&nbsp;Alessandra Angelucci,&nbsp;Peer-Timo Bremer","doi":"10.1145/3139295.3139299","DOIUrl":null,"url":null,"abstract":"<p><p>Modern science is inundated with ever increasing data sizes as computational capabilities and image acquisition techniques continue to improve. For example, simulations are tackling ever larger domains with higher fidelity, and high-throughput microscopy techniques generate larger data that are fundamental to gather biologically and medically relevant insights. As the image sizes exceed memory, and even sometimes local disk space, each step in a scientific workflow is impacted. Current software solutions enable data exploration with limited interactivity for visualization and analytic tasks. Furthermore analysis on HPC systems often require complex hand-written parallel implementations of algorithms that suffer from poor portability and maintainability. We present a software infrastructure that simplifies end-to-end visualization and analysis of massive data. First, a hierarchical streaming data access layer enables interactive exploration of remote data, with fast data fetching to test analytics on subsets of the data. Second, a library simplifies the process of developing new analytics algorithms, allowing users to rapidly prototype new approaches and deploy them in an HPC setting. Third, a scalable runtime system automates mapping analysis algorithms to whatever computational hardware is available, reducing the complexity of developing scaling algorithms. We demonstrate the usability and performance of our system using a use case from neuroscience: filtering, registration, and visualization of tera-scale microscopy data. We evaluate the performance of our system using a leadership-class supercomputer, Shaheen II.</p>","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"2017 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3139295.3139299","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modern science is inundated with ever increasing data sizes as computational capabilities and image acquisition techniques continue to improve. For example, simulations are tackling ever larger domains with higher fidelity, and high-throughput microscopy techniques generate larger data that are fundamental to gather biologically and medically relevant insights. As the image sizes exceed memory, and even sometimes local disk space, each step in a scientific workflow is impacted. Current software solutions enable data exploration with limited interactivity for visualization and analytic tasks. Furthermore analysis on HPC systems often require complex hand-written parallel implementations of algorithms that suffer from poor portability and maintainability. We present a software infrastructure that simplifies end-to-end visualization and analysis of massive data. First, a hierarchical streaming data access layer enables interactive exploration of remote data, with fast data fetching to test analytics on subsets of the data. Second, a library simplifies the process of developing new analytics algorithms, allowing users to rapidly prototype new approaches and deploy them in an HPC setting. Third, a scalable runtime system automates mapping analysis algorithms to whatever computational hardware is available, reducing the complexity of developing scaling algorithms. We demonstrate the usability and performance of our system using a use case from neuroscience: filtering, registration, and visualization of tera-scale microscopy data. We evaluate the performance of our system using a leadership-class supercomputer, Shaheen II.

Abstract Image

Abstract Image

Abstract Image

交互式可扩展分析和可视化系统。
随着计算能力和图像采集技术的不断提高,现代科学被不断增加的数据量所淹没。例如,模拟正在以更高的保真度处理更大的域,高通量显微镜技术产生更大的数据,这些数据是收集生物学和医学相关见解的基础。当图像大小超过内存,甚至有时超过本地磁盘空间时,科学工作流程中的每一步都会受到影响。当前的软件解决方案使数据探索具有有限的交互性,用于可视化和分析任务。此外,对高性能计算系统的分析通常需要复杂的手写并行算法实现,这些算法的可移植性和可维护性都很差。我们提出了一个简化端到端可视化和海量数据分析的软件基础设施。首先,分层流数据访问层支持对远程数据的交互式探索,并具有快速的数据获取以测试对数据子集的分析。其次,库简化了开发新分析算法的过程,允许用户快速创建新方法的原型并将其部署到HPC设置中。第三,可扩展的运行时系统自动将分析算法映射到任何可用的计算硬件,从而降低了开发缩放算法的复杂性。我们用神经科学的一个用例来展示我们系统的可用性和性能:过滤、注册和可视化万亿级显微镜数据。我们使用领导级超级计算机Shaheen II来评估系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信