Multirate Kalman Filter Rejects Impulse Noise in Frequency-Domain-Multiplexed Tracker Measurements.

Robert A MacLachlan, Ralph L Hollis, Branislav Jaramaz, Cameron N Riviere, Joseph N Martel, Kenneth L Urish
{"title":"Multirate Kalman Filter Rejects Impulse Noise in Frequency-Domain-Multiplexed Tracker Measurements.","authors":"Robert A MacLachlan,&nbsp;Ralph L Hollis,&nbsp;Branislav Jaramaz,&nbsp;Cameron N Riviere,&nbsp;Joseph N Martel,&nbsp;Kenneth L Urish","doi":"10.1109/ICSENS.2017.8234073","DOIUrl":null,"url":null,"abstract":"<p><p>Frequency domain multiplexing (FDM) is a useful for making multiple measurements simultaneously, such as in optical and electromagnetic position trackers. Much interference is periodic (e.g., AC power harmonics), and is rejected well by FDM, but impulse disturbances are also common. Impulses corrupt the entire spectrum for a short period, and are better rejected in the time domain. Nonlinear blanking is a simple way to suppress impulses, but cannot be easily realized when the required dynamic range is large, and problematic noise may be far smaller than the signal. The described multi-rate Kalman filter upsamples the prediction to the input rate so that impulse departures from the predicted signal are easily detected and blanked out. Also, noise levels in unused adjacent channels are used to estimate measurement noise so that the Kalman filter adapts more slowly when noise is high, keeping output noise roughly constant even in the presence of longer noise bursts.</p>","PeriodicalId":74503,"journal":{"name":"Proceedings of IEEE Sensors. IEEE International Conference on Sensors","volume":"2017 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICSENS.2017.8234073","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors. IEEE International Conference on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2017.8234073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Frequency domain multiplexing (FDM) is a useful for making multiple measurements simultaneously, such as in optical and electromagnetic position trackers. Much interference is periodic (e.g., AC power harmonics), and is rejected well by FDM, but impulse disturbances are also common. Impulses corrupt the entire spectrum for a short period, and are better rejected in the time domain. Nonlinear blanking is a simple way to suppress impulses, but cannot be easily realized when the required dynamic range is large, and problematic noise may be far smaller than the signal. The described multi-rate Kalman filter upsamples the prediction to the input rate so that impulse departures from the predicted signal are easily detected and blanked out. Also, noise levels in unused adjacent channels are used to estimate measurement noise so that the Kalman filter adapts more slowly when noise is high, keeping output noise roughly constant even in the presence of longer noise bursts.

Abstract Image

Abstract Image

Abstract Image

多速率卡尔曼滤波抑制频域复用跟踪测量中的脉冲噪声。
频域多路复用(FDM)对于同时进行多个测量非常有用,例如在光学和电磁位置跟踪器中。许多干扰是周期性的(例如,交流功率谐波),FDM可以很好地抑制,但脉冲干扰也很常见。脉冲在短时间内破坏整个频谱,并且在时域内得到更好的抑制。非线性消隐是一种简单的抑制脉冲的方法,但在要求的动态范围较大,问题噪声可能远小于信号的情况下不容易实现。所描述的多速率卡尔曼滤波器将预测值上采样到输入速率,从而很容易检测到与预测信号的脉冲偏离并消除。此外,未使用的相邻通道中的噪声水平用于估计测量噪声,以便卡尔曼滤波器在噪声高时适应得更慢,即使在存在较长的噪声爆发时也能保持输出噪声大致恒定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信