On the preconditioned GAOR method for a linear complementarity problem with an M-matrix.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-27 DOI:10.1186/s13660-018-1789-5
Shu-Xin Miao, Dan Zhang
{"title":"On the preconditioned GAOR method for a linear complementarity problem with an <i>M</i>-matrix.","authors":"Shu-Xin Miao,&nbsp;Dan Zhang","doi":"10.1186/s13660-018-1789-5","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, based on the Hadjidimos preconditioner, a preconditioned GAOR method was proposed for solving the linear complementarity problem (Liu and Li in East Asian J. Appl. Math. 2:94-107, 2012). In this paper, we propose a new preconditioned GAOR method for solving the linear complementarity problem with an <i>M</i>-matrix. The convergence of the proposed method is analyzed, and the comparison results are obtained to show it accelerates the convergence of the original GAOR method and the preconditioned GAOR method in (Liu and Li in East Asian J. Appl. Math. 2:94-107, 2012). Numerical examples verify the theoretical analysis.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"195"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1789-5","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1789-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, based on the Hadjidimos preconditioner, a preconditioned GAOR method was proposed for solving the linear complementarity problem (Liu and Li in East Asian J. Appl. Math. 2:94-107, 2012). In this paper, we propose a new preconditioned GAOR method for solving the linear complementarity problem with an M-matrix. The convergence of the proposed method is analyzed, and the comparison results are obtained to show it accelerates the convergence of the original GAOR method and the preconditioned GAOR method in (Liu and Li in East Asian J. Appl. Math. 2:94-107, 2012). Numerical examples verify the theoretical analysis.

一类m矩阵线性互补问题的预条件GAOR方法。
最近,基于Hadjidimos预条件,提出了一种求解线性互补问题的预条件GAOR方法(Liu and Li in East Asian J. Appl.)。数学。2:94-107,2012)。本文提出了一种新的求解m矩阵线性互补问题的预条件GAOR方法。对所提方法的收敛性进行了分析,对比结果表明所提方法加快了原GAOR方法和预置GAOR方法(Liu and Li in East Asian J. Appl.)的收敛速度。数学。2:94-107,2012)。数值算例验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信