A Crank-Nicolson collocation spectral method for the two-dimensional telegraph equations.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-19 DOI:10.1186/s13660-018-1728-5
Yanjie Zhou, Zhendong Luo
{"title":"A Crank-Nicolson collocation spectral method for the two-dimensional telegraph equations.","authors":"Yanjie Zhou,&nbsp;Zhendong Luo","doi":"10.1186/s13660-018-1728-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we mainly focus to study the Crank-Nicolson collocation spectral method for two-dimensional (2D) telegraph equations. For this purpose, we first establish a Crank-Nicolson collocation spectral model based on the Chebyshev polynomials for the 2D telegraph equations. We then discuss the existence, uniqueness, stability, and convergence of the Crank-Nicolson collocation spectral numerical solutions. Finally, we use two sets of numerical examples to verify the validity of theoretical analysis. This implies that the Crank-Nicolson collocation spectral model is very effective for solving the 2D telegraph equations.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"137"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1728-5","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1728-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we mainly focus to study the Crank-Nicolson collocation spectral method for two-dimensional (2D) telegraph equations. For this purpose, we first establish a Crank-Nicolson collocation spectral model based on the Chebyshev polynomials for the 2D telegraph equations. We then discuss the existence, uniqueness, stability, and convergence of the Crank-Nicolson collocation spectral numerical solutions. Finally, we use two sets of numerical examples to verify the validity of theoretical analysis. This implies that the Crank-Nicolson collocation spectral model is very effective for solving the 2D telegraph equations.

Abstract Image

Abstract Image

Abstract Image

二维电报方程的Crank-Nicolson搭配谱法。
本文主要研究二维(2D)电报方程的Crank-Nicolson搭配谱方法。为此,我们首先对二维电报方程建立了基于Chebyshev多项式的Crank-Nicolson搭配谱模型。然后讨论了Crank-Nicolson配置谱数值解的存在性、唯一性、稳定性和收敛性。最后,用两组数值算例验证了理论分析的有效性。这意味着Crank-Nicolson搭配谱模型对于求解二维电报方程是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信