Sobolev's embedding on time scales.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-19 DOI:10.1186/s13660-018-1730-y
Naveed Ahmad, Hira Ashraf Baig, Ghaus Ur Rahman, M Shoaib Saleem
{"title":"Sobolev's embedding on time scales.","authors":"Naveed Ahmad,&nbsp;Hira Ashraf Baig,&nbsp;Ghaus Ur Rahman,&nbsp;M Shoaib Saleem","doi":"10.1186/s13660-018-1730-y","DOIUrl":null,"url":null,"abstract":"<p><p>For <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>n</mi></math> , the embeddings of Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> of functions defined on an open subset of an arbitrary time scale <math><msup><mi>T</mi><mi>n</mi></msup></math> , <math><mi>n</mi><mo>≥</mo><mn>1</mn></math> , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 2006) for <math><mi>n</mi><mo>=</mo><mn>1</mn></math> and later generalized to arbitrary <math><mi>n</mi><mo>≥</mo><mn>1</mn></math> in (Su et al. in Dyn. Partial Differ. Equ. 12(3):241-263, 2015). In this article we present the embeddings of Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> for <math><mi>n</mi><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></math> and then, using these embeddings, we develop general Sobolev's embedding for the Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> on time scales, where <i>k</i> is a non-negative integer and <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></math> .</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1730-y","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1730-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

For 1p<n , the embeddings of Sobolev spaces WΔ1,p(ΩTn) of functions defined on an open subset of an arbitrary time scale Tn , n1 , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 2006) for n=1 and later generalized to arbitrary n1 in (Su et al. in Dyn. Partial Differ. Equ. 12(3):241-263, 2015). In this article we present the embeddings of Sobolev spaces WΔ1,p(ΩTn) for np and then, using these embeddings, we develop general Sobolev's embedding for the Sobolev spaces WΔ1,p(ΩTn) on time scales, where k is a non-negative integer and 1p .

Sobolev在时间尺度上的嵌入。
对于1≤pn,定义在任意时间尺度Tn, n≥1的开放子集上的函数的Sobolev空间WΔ1,p(ΩTn)的嵌入具有Lebesgue Δ-measure,在Adv. Differ中(Agarwal et al.)得到了发展。方程2006:38121,2006),后来推广到任意n≥1在(Su等人在Dyn. Partial Differ。方程12(3):241-263,2015)。在本文中,我们给出了n≤p≤∞时Sobolev空间WΔ1,p(ΩTn)的嵌入,然后,利用这些嵌入,我们开发了时间尺度上Sobolev空间WΔ1,p(ΩTn)的一般Sobolev嵌入,其中k是一个非负整数且1≤p≤∞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信