Naveed Ahmad, Hira Ashraf Baig, Ghaus Ur Rahman, M Shoaib Saleem
{"title":"Sobolev's embedding on time scales.","authors":"Naveed Ahmad, Hira Ashraf Baig, Ghaus Ur Rahman, M Shoaib Saleem","doi":"10.1186/s13660-018-1730-y","DOIUrl":null,"url":null,"abstract":"<p><p>For <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>n</mi></math> , the embeddings of Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> of functions defined on an open subset of an arbitrary time scale <math><msup><mi>T</mi><mi>n</mi></msup></math> , <math><mi>n</mi><mo>≥</mo><mn>1</mn></math> , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 2006) for <math><mi>n</mi><mo>=</mo><mn>1</mn></math> and later generalized to arbitrary <math><mi>n</mi><mo>≥</mo><mn>1</mn></math> in (Su et al. in Dyn. Partial Differ. Equ. 12(3):241-263, 2015). In this article we present the embeddings of Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> for <math><mi>n</mi><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></math> and then, using these embeddings, we develop general Sobolev's embedding for the Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> on time scales, where <i>k</i> is a non-negative integer and <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></math> .</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1730-y","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1730-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
For , the embeddings of Sobolev spaces of functions defined on an open subset of an arbitrary time scale , , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 2006) for and later generalized to arbitrary in (Su et al. in Dyn. Partial Differ. Equ. 12(3):241-263, 2015). In this article we present the embeddings of Sobolev spaces for and then, using these embeddings, we develop general Sobolev's embedding for the Sobolev spaces on time scales, where k is a non-negative integer and .
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.