Computation of Nevanlinna characteristic functions derived from generating functions of some special numbers.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-07 DOI:10.1186/s13660-018-1722-y
Serkan Araci, Mehmet Acikgoz
{"title":"Computation of Nevanlinna characteristic functions derived from generating functions of some special numbers.","authors":"Serkan Araci,&nbsp;Mehmet Acikgoz","doi":"10.1186/s13660-018-1722-y","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper, firstly we find a number of poles of generating functions of Bernoulli numbers and associated Euler numbers, denoted by <math><mi>n</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>B</mi><mo>)</mo></math> and <math><mi>n</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>E</mi><mo>)</mo></math> , respectively. Secondly, we derive the mean value of a positive logarithm of generating functions of Bernoulli numbers and associated Euler numbers shown as <math><mi>m</mi><mo>(</mo><mn>2</mn><mi>π</mi><mo>,</mo><mi>B</mi><mo>)</mo></math> and <math><mi>m</mi><mo>(</mo><mi>π</mi><mo>,</mo><mi>E</mi><mo>)</mo></math> , respectively. From these properties, we find Nevanlinna characteristic functions which we stated in the paper. Finally, as an application, we show that the generating function of Bernoulli numbers is a <i>normal function</i>.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"128"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1722-y","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1722-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

In the present paper, firstly we find a number of poles of generating functions of Bernoulli numbers and associated Euler numbers, denoted by n(a,B) and n(a,E) , respectively. Secondly, we derive the mean value of a positive logarithm of generating functions of Bernoulli numbers and associated Euler numbers shown as m(2π,B) and m(π,E) , respectively. From these properties, we find Nevanlinna characteristic functions which we stated in the paper. Finally, as an application, we show that the generating function of Bernoulli numbers is a normal function.

由若干特殊数的生成函数导出奈万林纳特征函数的计算。
本文首先求出伯努利数及其相关欧拉数的生成函数的若干极点,分别记为n(a,B)和n(a,E)。其次,我们推导了伯努利数和相关欧拉数的生成函数的正对数的平均值,分别表示为m(2π,B)和m(π,E)。从这些性质中,我们得到了本文所述的奈万林纳特征函数。最后,作为一个应用,证明了伯努利数的生成函数是一个正态函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信