Maximum norm error estimates of fourth-order compact difference scheme for the nonlinear Schrödinger equation involving a quintic term.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-20 DOI:10.1186/s13660-018-1775-y
Hanqing Hu, Hanzhang Hu
{"title":"Maximum norm error estimates of fourth-order compact difference scheme for the nonlinear Schrödinger equation involving a quintic term.","authors":"Hanqing Hu,&nbsp;Hanzhang Hu","doi":"10.1186/s13660-018-1775-y","DOIUrl":null,"url":null,"abstract":"<p><p>A compact finite difference (CFD) scheme is presented for the nonlinear Schrödinger equation involving a quintic term. The two discrete conservative laws are obtained. The unconditional stability and convergence in maximum norm with order <math><mi>O</mi><mo>(</mo><msup><mi>τ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>h</mi><mn>4</mn></msup><mo>)</mo></math> are proved by using the energy method. A numerical experiment is presented to support our theoretical results.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"180"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1775-y","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1775-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

A compact finite difference (CFD) scheme is presented for the nonlinear Schrödinger equation involving a quintic term. The two discrete conservative laws are obtained. The unconditional stability and convergence in maximum norm with order O(τ2+h4) are proved by using the energy method. A numerical experiment is presented to support our theoretical results.

Abstract Image

Abstract Image

Abstract Image

含五次项的非线性Schrödinger方程的四阶紧致差分格式的最大范数误差估计。
针对含有五次项的非线性Schrödinger方程,提出了一种紧凑的有限差分格式。得到了两个离散的守恒律。利用能量法证明了该方法在O(τ2+h4)阶最大范数下的无条件稳定性和收敛性。通过数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信