Nina Lackner, Anna Hintersonnleitner, Andreas Otto Wagner, Paul Illmer
{"title":"Hydrogenotrophic Methanogenesis and Autotrophic Growth of <i>Methanosarcina thermophila</i>.","authors":"Nina Lackner, Anna Hintersonnleitner, Andreas Otto Wagner, Paul Illmer","doi":"10.1155/2018/4712608","DOIUrl":null,"url":null,"abstract":"<p><p>Although Methanosarcinales are versatile concerning their methanogenic substrates, the ability of <i>Methanosarcina thermophila</i> to use carbon dioxide (CO<sub>2</sub>) for catabolic and anabolic metabolism was not proven until now. Here, we show that <i>M. thermophila</i> used CO<sub>2</sub> to perform hydrogenotrophic methanogenesis in the presence as well as in the absence of methanol. During incubation with hydrogen, the methanogen utilized the substrates methanol and CO<sub>2</sub> consecutively, resulting in a biphasic methane production. Growth exclusively from CO<sub>2</sub> occurred slowly but reproducibly with concomitant production of biomass, verified by DNA quantification. Besides verification through multiple transfers into fresh medium, the identity of the culture was confirmed by 16s RNA sequencing, and the incorporation of carbon atoms from <sup>13</sup>CO<sub>2</sub> into <sup>13</sup>CH<sub>4</sub> molecules was measured to validate the obtained data. New insights into the physiology of <i>M. thermophila</i> can serve as reference for genomic analyses to link genes with metabolic features in uncultured organisms.</p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":"2018 ","pages":"4712608"},"PeriodicalIF":2.3000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaea-An International Microbiological Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2018/4712608","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although Methanosarcinales are versatile concerning their methanogenic substrates, the ability of Methanosarcina thermophila to use carbon dioxide (CO2) for catabolic and anabolic metabolism was not proven until now. Here, we show that M. thermophila used CO2 to perform hydrogenotrophic methanogenesis in the presence as well as in the absence of methanol. During incubation with hydrogen, the methanogen utilized the substrates methanol and CO2 consecutively, resulting in a biphasic methane production. Growth exclusively from CO2 occurred slowly but reproducibly with concomitant production of biomass, verified by DNA quantification. Besides verification through multiple transfers into fresh medium, the identity of the culture was confirmed by 16s RNA sequencing, and the incorporation of carbon atoms from 13CO2 into 13CH4 molecules was measured to validate the obtained data. New insights into the physiology of M. thermophila can serve as reference for genomic analyses to link genes with metabolic features in uncultured organisms.
期刊介绍:
Archaea is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles dealing with all aspects of archaea, including environmental adaptation, enzymology, genetics and genomics, metabolism, molecular biology, molecular ecology, phylogeny, and ultrastructure. Bioinformatics studies and biotechnological implications of archaea will be considered. Published since 2002, Archaea provides a unique venue for exchanging information about these extraordinary prokaryotes.