Sequence Similarity Searching

Q1 Biochemistry, Genetics and Molecular Biology
Gang Hu, Lukasz Kurgan
{"title":"Sequence Similarity Searching","authors":"Gang Hu,&nbsp;Lukasz Kurgan","doi":"10.1002/cpps.71","DOIUrl":null,"url":null,"abstract":"<p>Sequence similarity searching has become an important part of the daily routine of molecular biologists, bioinformaticians and biophysicists. With the rapidly growing sequence databanks, this computational approach is commonly applied to determine functions and structures of unannotated sequences, to investigate relationships between sequences, and to construct phylogenetic trees. We introduce arguably the most popular BLAST-based family of the sequence similarity search tools. We explain basic concepts related to the sequence alignment and demonstrate how to search the current databanks using Web site versions of BLASTP, PSI-BLAST and BLASTN. We also describe the standalone BLAST+ tool. Moreover, this unit discusses the inputs, parameter settings and outputs of these tools. Lastly, we cover recent advances in the sequence similarity searching, focusing on the fast MMseqs2 method. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10866,"journal":{"name":"Current Protocols in Protein Science","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpps.71","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Protein Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpps.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 48

Abstract

Sequence similarity searching has become an important part of the daily routine of molecular biologists, bioinformaticians and biophysicists. With the rapidly growing sequence databanks, this computational approach is commonly applied to determine functions and structures of unannotated sequences, to investigate relationships between sequences, and to construct phylogenetic trees. We introduce arguably the most popular BLAST-based family of the sequence similarity search tools. We explain basic concepts related to the sequence alignment and demonstrate how to search the current databanks using Web site versions of BLASTP, PSI-BLAST and BLASTN. We also describe the standalone BLAST+ tool. Moreover, this unit discusses the inputs, parameter settings and outputs of these tools. Lastly, we cover recent advances in the sequence similarity searching, focusing on the fast MMseqs2 method. © 2018 by John Wiley & Sons, Inc.

序列相似性搜索
序列相似性搜索已成为分子生物学家、生物信息学家和生物物理学家日常工作的重要组成部分。随着序列数据库的快速增长,这种计算方法通常用于确定未注释序列的功能和结构,研究序列之间的关系,以及构建系统发育树。我们介绍了最流行的基于blast的序列相似性搜索工具家族。我们解释了与序列比对相关的基本概念,并演示了如何使用BLASTP、PSI-BLAST和BLASTN的网站版本搜索当前的数据库。我们还描述了独立的BLAST+工具。此外,本单元还讨论了这些工具的输入、参数设置和输出。最后,我们介绍了序列相似性搜索的最新进展,重点介绍了快速MMseqs2方法。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Protocols in Protein Science
Current Protocols in Protein Science Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With the mapping of the human genome, more and more researchers are exploring protein structures and functions in living organisms. Current Protocols in Protein Science provides protein scientists, biochemists, molecular biologists, geneticists, and others with the first comprehensive suite of protocols for this growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信