{"title":"Benzoxazole derivatives: design, synthesis and biological evaluation.","authors":"Saloni Kakkar, Sumit Tahlan, Siong Meng Lim, Kalavathy Ramasamy, Vasudevan Mani, Syed Adnan Ali Shah, Balasubramanian Narasimhan","doi":"10.1186/s13065-018-0459-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A new series of benzoxazole analogues was synthesized and checked for their in vitro antibacterial, antifungal and anticancer activities.</p><p><strong>Results and discussion: </strong>The synthesized benzoxazole compounds were confirmed by IR, <sup>1</sup>H/<sup>13</sup>C-NMR, mass and screened for their in vitro antimicrobial activity against Gram-positive bacterium: Bacillus subtilis, four Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi and two fungal strains: Candida albicans and Aspergillus niger using tube dilution technique and minimum inhibitory concentration (MIC) was noted in µM and compared to ofloxacin and fluconazole. Human colorectal carcinoma (HCT116) cancer cell line was used for the determination of in vitro anticancer activity (IC<sub>50</sub> value) by Sulforhodamine B assay using 5-fluorouracil as standard drug.</p><p><strong>Conclusion: </strong>The performed study indicated that the compounds 1, 10, 13, 16, 19, 20 and 24 had highest antimicrobial activity with MIC values comparable to ofloxacin and fluconazole and compounds 4, 6, 25 and 26 had best anticancer activity in comparison to 5-fluorouracil.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0459-5","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0459-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 47
Abstract
Background: A new series of benzoxazole analogues was synthesized and checked for their in vitro antibacterial, antifungal and anticancer activities.
Results and discussion: The synthesized benzoxazole compounds were confirmed by IR, 1H/13C-NMR, mass and screened for their in vitro antimicrobial activity against Gram-positive bacterium: Bacillus subtilis, four Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi and two fungal strains: Candida albicans and Aspergillus niger using tube dilution technique and minimum inhibitory concentration (MIC) was noted in µM and compared to ofloxacin and fluconazole. Human colorectal carcinoma (HCT116) cancer cell line was used for the determination of in vitro anticancer activity (IC50 value) by Sulforhodamine B assay using 5-fluorouracil as standard drug.
Conclusion: The performed study indicated that the compounds 1, 10, 13, 16, 19, 20 and 24 had highest antimicrobial activity with MIC values comparable to ofloxacin and fluconazole and compounds 4, 6, 25 and 26 had best anticancer activity in comparison to 5-fluorouracil.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry