{"title":"The next-generation K-means algorithm.","authors":"Eugene Demidenko","doi":"10.1002/sam.11379","DOIUrl":null,"url":null,"abstract":"<p><p>Typically, when referring to a model-based classification, the mixture distribution approach is understood. In contrast, we revive the hard-classification model-based approach developed by Banfield and Raftery (1993) for which K-means is equivalent to the maximum likelihood (ML) estimation. The next-generation K-means algorithm does not end after the classification is achieved, but moves forward to answer the following fundamental questions: Are there clusters, how many clusters are there, what are the statistical properties of the estimated means and index sets, what is the distribution of the coefficients in the clusterwise regression, and how to classify multilevel data? The statistical model-based approach for the K-means algorithm is the key, because it allows statistical simulations and studying the properties of classification following the track of the classical statistics. This paper illustrates the application of the ML classification to testing the no-clusters hypothesis, to studying various methods for selection of the number of clusters using simulations, robust clustering using Laplace distribution, studying properties of the coefficients in clusterwise regression, and finally to multilevel data by marrying the variance components model with K-means.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"11 4","pages":"153-166"},"PeriodicalIF":2.1000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11379","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Typically, when referring to a model-based classification, the mixture distribution approach is understood. In contrast, we revive the hard-classification model-based approach developed by Banfield and Raftery (1993) for which K-means is equivalent to the maximum likelihood (ML) estimation. The next-generation K-means algorithm does not end after the classification is achieved, but moves forward to answer the following fundamental questions: Are there clusters, how many clusters are there, what are the statistical properties of the estimated means and index sets, what is the distribution of the coefficients in the clusterwise regression, and how to classify multilevel data? The statistical model-based approach for the K-means algorithm is the key, because it allows statistical simulations and studying the properties of classification following the track of the classical statistics. This paper illustrates the application of the ML classification to testing the no-clusters hypothesis, to studying various methods for selection of the number of clusters using simulations, robust clustering using Laplace distribution, studying properties of the coefficients in clusterwise regression, and finally to multilevel data by marrying the variance components model with K-means.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.