{"title":"Rift Valley fever: current challenges and future prospects.","authors":"Yousif E Himeidan","doi":"10.2147/RRTM.S63520","DOIUrl":null,"url":null,"abstract":"<p><p>Rift Valley fever (RVF) is a zoonotic, mosquito-borne viral disease that affects human health and causes significant losses in the livestock industry. Recent outbreaks have led to severe human infections with high mortality rates. There are many challenges to applying effective preventive and control measures, including weak infrastructure of health facilities, lack of capacity and support systems for field logistics and communication, access to global expert organizations, and insufficient information on the epidemiological and reservoir status of the RVF virus. The health systems in East African countries are underdeveloped, with gaps in adaptability to new, more accurate and rapid techniques, and well-trained staff that affect their capacity to monitor and evaluate the disease. Surveillance and response systems are inadequate in providing accurate information in a timely manner for decision making to deal with the scope of interrupting the disease transmission by applying mass animal vaccination, and other preventive measures at the early stage of an outbreak. The historical vaccines are unsuitable for use in newborn and gestating livestock, and the recent ones require a booster and annual revaccination. Future live-attenuated RVF vaccines should possess lower safety concerns regardless of the physiologic state of the animal, and provide rapid and long-term immunity after a single dose of vaccination. In the absence of an effective vaccination program, prevention and control measures must be immediately undertaken after an alert is generated. These measures include enforcing and adapting standard protocols for animal trade and movement, extensive vector control, safe disposal of infected animals, and modification of human-animal contact behavior. Directing control efforts on farmers and workers who deal with, handle, or live close to livestock, and focusing on areas with populations at high risk of an epidemic are desirable. Consideration of prevention methods as a first-line strategy against RVF is practical owing to the absence of a human vaccine, particularly under the current high environmental risks and expanding global travel and animal trade. Universal platforms are needed to support coordinated efforts; alert and response operations; exchange of expertise; and disease detection, diagnosis, control, and prevention.</p>","PeriodicalId":21138,"journal":{"name":"Research and Reports in Tropical Medicine","volume":"7 ","pages":"1-9"},"PeriodicalIF":3.1000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/RRTM.S63520","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Reports in Tropical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/RRTM.S63520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 6
Abstract
Rift Valley fever (RVF) is a zoonotic, mosquito-borne viral disease that affects human health and causes significant losses in the livestock industry. Recent outbreaks have led to severe human infections with high mortality rates. There are many challenges to applying effective preventive and control measures, including weak infrastructure of health facilities, lack of capacity and support systems for field logistics and communication, access to global expert organizations, and insufficient information on the epidemiological and reservoir status of the RVF virus. The health systems in East African countries are underdeveloped, with gaps in adaptability to new, more accurate and rapid techniques, and well-trained staff that affect their capacity to monitor and evaluate the disease. Surveillance and response systems are inadequate in providing accurate information in a timely manner for decision making to deal with the scope of interrupting the disease transmission by applying mass animal vaccination, and other preventive measures at the early stage of an outbreak. The historical vaccines are unsuitable for use in newborn and gestating livestock, and the recent ones require a booster and annual revaccination. Future live-attenuated RVF vaccines should possess lower safety concerns regardless of the physiologic state of the animal, and provide rapid and long-term immunity after a single dose of vaccination. In the absence of an effective vaccination program, prevention and control measures must be immediately undertaken after an alert is generated. These measures include enforcing and adapting standard protocols for animal trade and movement, extensive vector control, safe disposal of infected animals, and modification of human-animal contact behavior. Directing control efforts on farmers and workers who deal with, handle, or live close to livestock, and focusing on areas with populations at high risk of an epidemic are desirable. Consideration of prevention methods as a first-line strategy against RVF is practical owing to the absence of a human vaccine, particularly under the current high environmental risks and expanding global travel and animal trade. Universal platforms are needed to support coordinated efforts; alert and response operations; exchange of expertise; and disease detection, diagnosis, control, and prevention.