A Truncation Model for Estimating Species Richness.

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Babagnidé François Koladjo, Mesrob I Ohannessian, Elisabeth Gassiat
{"title":"A Truncation Model for Estimating Species Richness.","authors":"Babagnidé François Koladjo,&nbsp;Mesrob I Ohannessian,&nbsp;Elisabeth Gassiat","doi":"10.1515/ijb-2017-0035","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a truncation model for the abundance distribution in species richness estimation. This model is inherently semiparametric and incorporates an unknown truncation threshold between rare and abundant observations. Using the conditional likelihood, we derive a class of estimators for the parameters in this model by stepwise maximization. The species richness estimator is given by the integer maximizing the binomial likelihood, given all other parameters in the model. Under regularity conditions, we show that our estimators of the model parameters are asymptotically efficient. We recover Chaos lower bound estimator of species richness when the parametric part of the model is single-component Poisson. Thus our class of estimators strictly generalized the latter. We illustrate the performance of the proposed method in a simulation study, and compare it favorably to other widely-used estimators. We also give an application to estimating the number of distinct vocabulary words in French playwright Molière's Tartuffe.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2017-0035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2017-0035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a truncation model for the abundance distribution in species richness estimation. This model is inherently semiparametric and incorporates an unknown truncation threshold between rare and abundant observations. Using the conditional likelihood, we derive a class of estimators for the parameters in this model by stepwise maximization. The species richness estimator is given by the integer maximizing the binomial likelihood, given all other parameters in the model. Under regularity conditions, we show that our estimators of the model parameters are asymptotically efficient. We recover Chaos lower bound estimator of species richness when the parametric part of the model is single-component Poisson. Thus our class of estimators strictly generalized the latter. We illustrate the performance of the proposed method in a simulation study, and compare it favorably to other widely-used estimators. We also give an application to estimating the number of distinct vocabulary words in French playwright Molière's Tartuffe.

物种丰富度估算的截断模型。
在物种丰富度估算中,我们提出了一种截断模型。该模型本质上是半参数的,并且在罕见和丰富的观测值之间包含未知的截断阈值。利用条件似然,通过逐步最大化的方法导出了该模型中参数的一类估计量。在给定模型中所有其他参数的情况下,物种丰富度估计值由二项似然最大值的整数给出。在正则性条件下,我们证明了模型参数的估计是渐近有效的。当模型的参数部分为单分量泊松时,我们恢复了物种丰富度的混沌下界估计。因此我们的估计量严格推广了后者。我们在仿真研究中说明了所提出方法的性能,并将其与其他广泛使用的估计器进行了比较。我们还应用了法国剧作家莫里埃尔的《塔图夫》中不同词汇的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信