Pdgf1aa regulates zebrafish neural crest cells migration through Hif-1 in an oxygen-independent manner

IF 2.6 Q2 Medicine
J.A. Espina , C.L. Marchant , G.V. De Ferrari , A.E. Reyes
{"title":"Pdgf1aa regulates zebrafish neural crest cells migration through Hif-1 in an oxygen-independent manner","authors":"J.A. Espina ,&nbsp;C.L. Marchant ,&nbsp;G.V. De Ferrari ,&nbsp;A.E. Reyes","doi":"10.1016/j.mod.2018.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>The transcription factor Hif-1α regulates epithelial to mesenchymal transition and neural crest cell chemotaxis in <em>Xenopus</em>. Hif-1α is only stabilised under low oxygen levels, and the <em>in vivo</em> stabilisation of this factor in neural crest cells is poorly understood. Multiple oxygen-independent Hif-1α regulators have been described in cell cultures and cancer models. Among these, the PDGF pathway has been linked to neural crest development. The present study established a connection between the Pdgf pathway and Hif-1α stabilisation in zebrafish. Specifically, embryos with a disrupted Pdgf pathway were rescued by employing <em>hif</em>-<em>1α</em> mRNA through qPCR and immunohistochemistry techniques. The data suggest that oxygen levels in the neural crest are normal and that Pdgf1aa regulates neural crest migration through Hif-1α expression.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"154 ","pages":"Pages 203-207"},"PeriodicalIF":2.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.07.007","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318300753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5

Abstract

The transcription factor Hif-1α regulates epithelial to mesenchymal transition and neural crest cell chemotaxis in Xenopus. Hif-1α is only stabilised under low oxygen levels, and the in vivo stabilisation of this factor in neural crest cells is poorly understood. Multiple oxygen-independent Hif-1α regulators have been described in cell cultures and cancer models. Among these, the PDGF pathway has been linked to neural crest development. The present study established a connection between the Pdgf pathway and Hif-1α stabilisation in zebrafish. Specifically, embryos with a disrupted Pdgf pathway were rescued by employing hif- mRNA through qPCR and immunohistochemistry techniques. The data suggest that oxygen levels in the neural crest are normal and that Pdgf1aa regulates neural crest migration through Hif-1α expression.

Pdgf1aa通过Hif-1以不依赖氧的方式调节斑马鱼神经嵴细胞的迁移
转录因子Hif-1α调控爪蟾上皮细胞向间充质细胞的转化和神经嵴细胞趋化。Hif-1α仅在低氧水平下稳定,并且该因子在神经嵴细胞中的体内稳定性尚不清楚。在细胞培养和癌症模型中已经描述了多种不依赖氧的Hif-1α调节因子。其中,PDGF通路与神经嵴发育有关。本研究在斑马鱼中建立了Pdgf通路与Hif-1α稳定之间的联系。具体来说,通过qPCR和免疫组织化学技术,利用hif-1α mRNA挽救了Pdgf通路中断的胚胎。这些数据表明,神经嵴中的氧水平是正常的,Pdgf1aa通过Hif-1α的表达调节神经嵴的迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanisms of Development
Mechanisms of Development 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
12.4 weeks
期刊介绍: Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology. Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology. Areas of particular interest include: Cell and tissue morphogenesis Cell adhesion and migration Cell shape and polarity Biomechanics Theoretical modelling of cell and developmental biology Quantitative biology Stem cell biology Cell differentiation Cell proliferation and cell death Evo-Devo Membrane traffic Metabolic regulation Organ and organoid development Regeneration Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信