[Analyzing the fine-scale dynamics of two dominant species in a Polytrichum—Myrtillus pine forest. I. A homogeneous Markov chain and cyclicity indices].

IF 0.3 4区 生物学 Q4 BIOLOGY
Zhurnal obshchei biologii Pub Date : 2016-11-01
A A Maslov, D O Logofet
{"title":"[Analyzing the fine-scale dynamics of two dominant species in a Polytrichum—Myrtillus pine forest. I. A homogeneous Markov chain and cyclicity indices].","authors":"A A Maslov,&nbsp;D O Logofet","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Using long-term direct observations in a Polytrichum-Myrtillus pine forest, we have constructed and verified a homogeneous Markov chain model for two dominant species (Vaccinium myrtillus and V. vitis-idaed) at the late stages of succession. The sampling design features a large sample size (2000 quadrats) on permanent transects, several re-examinations with the interval of 5 years, and the use of species rooted frequency. As a model of the process under concern, the discrete Markov chain accounts for the following four states: both species being absent on the quadrat, one of them being present alone, and the joint presence of the both; the model time step coincides with the time interval between observations. The model is calibrated on the data of two successive examinations and verified on that of one more examination. \n\nAll possible transitions between the states are revealed to realize in quadrats for one time interval, as well as the absence of transitions at each state, which results in the complete digraph (directed graph) of transitions. Major model results are obtained by the formulae of finite Markov chain theory: the steady-state square distribution, cyclicity characteristics, and the mean durations of stages in the fine-scale dynamics. As a steady-state (stable) outcome of succession, the distribution among quadrats is expected where 30% of quadrats are occupied by V. myrtillus alone, 11% by V. vitis-idaea alone, both species are present on 18% of quadrats, and 41% of quadrats are 'empty'. This demonstrates a possibility for V. myrtillus and V. vitis-idaea to coexist stably at the latest stages of succession, with the clear predominance of V. myrtillus, yet without competitive exclusion. The quantitative characteristics of cyclicity and the durations of stages in the fine-scale dynamics enable us to estimate the total duration of secondary post-fire succession as about 45 years (to reach a distribution of states that differs less than 5% from the steady-state one). Out of the four states specified, the quadrats with V. vitis-idaea alone persist for the least time (8 years) on the average, while 'empty' ones persist for the greatest time (18 years). Forecasting the dynamics for one model time step forward and comparing the forecast with the real square distribution have revealed the measure of difference to be 5.4%. This illustrates the efficiency of the (time-)homogeneous Markov chain as a short-term forecast tool, yet leaves open the question whether the homogeneity hypothesis be true in the longer term.</p>","PeriodicalId":24026,"journal":{"name":"Zhurnal obshchei biologii","volume":"77 6","pages":"423-33"},"PeriodicalIF":0.3000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal obshchei biologii","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Using long-term direct observations in a Polytrichum-Myrtillus pine forest, we have constructed and verified a homogeneous Markov chain model for two dominant species (Vaccinium myrtillus and V. vitis-idaed) at the late stages of succession. The sampling design features a large sample size (2000 quadrats) on permanent transects, several re-examinations with the interval of 5 years, and the use of species rooted frequency. As a model of the process under concern, the discrete Markov chain accounts for the following four states: both species being absent on the quadrat, one of them being present alone, and the joint presence of the both; the model time step coincides with the time interval between observations. The model is calibrated on the data of two successive examinations and verified on that of one more examination. All possible transitions between the states are revealed to realize in quadrats for one time interval, as well as the absence of transitions at each state, which results in the complete digraph (directed graph) of transitions. Major model results are obtained by the formulae of finite Markov chain theory: the steady-state square distribution, cyclicity characteristics, and the mean durations of stages in the fine-scale dynamics. As a steady-state (stable) outcome of succession, the distribution among quadrats is expected where 30% of quadrats are occupied by V. myrtillus alone, 11% by V. vitis-idaea alone, both species are present on 18% of quadrats, and 41% of quadrats are 'empty'. This demonstrates a possibility for V. myrtillus and V. vitis-idaea to coexist stably at the latest stages of succession, with the clear predominance of V. myrtillus, yet without competitive exclusion. The quantitative characteristics of cyclicity and the durations of stages in the fine-scale dynamics enable us to estimate the total duration of secondary post-fire succession as about 45 years (to reach a distribution of states that differs less than 5% from the steady-state one). Out of the four states specified, the quadrats with V. vitis-idaea alone persist for the least time (8 years) on the average, while 'empty' ones persist for the greatest time (18 years). Forecasting the dynamics for one model time step forward and comparing the forecast with the real square distribution have revealed the measure of difference to be 5.4%. This illustrates the efficiency of the (time-)homogeneous Markov chain as a short-term forecast tool, yet leaves open the question whether the homogeneity hypothesis be true in the longer term.

多毛-桃金娘松林两种优势种的精细尺度动态分析。1 .齐次马尔可夫链和循环指数[j]。
通过对多毛-桃金娘松林的长期直接观测,建立并验证了两个优势种(桃金娘和vitis- ided)演替后期的均匀马尔可夫链模型。抽样设计的特点是在固定样条上使用大样本量(2000个样方),每隔5年进行多次复查,并使用物种扎根频率。作为所关注的过程的模型,离散马尔可夫链解释了以下四种状态:两种物种在样方上都不存在,其中一种单独存在,以及两者共同存在;模型时间步长与观测间的时间间隔一致。该模型在两次连续测试数据上进行了校准,并在一次测试数据上进行了验证。揭示了在一个时间间隔的样方中实现的所有状态之间可能的过渡,以及每个状态不存在过渡,从而得到过渡的完全有向图(directed graph)。主要的模型结果是由有限马尔可夫链理论公式得到的:稳态平方分布、循环特性和精细尺度动力学阶段的平均持续时间。作为演替的稳态(稳定)结果,在样方之间的分布预计为:myrtillus单独占据30%的样方,vitis- ideaea单独占据11%的样方,这两个物种都存在于18%的样方上,41%的样方是“空的”。这表明在演替的最后阶段,myrtillus和vitis- idea有可能稳定共存,myrtillus具有明显的优势,但没有竞争排斥。在精细尺度动力学中,周期的定量特征和阶段的持续时间使我们能够估计次生火后演替的总持续时间约为45年(达到与稳态分布差异小于5%的状态分布)。在指定的四种状态中,只有V. vitis- idea的样方平均持续时间最短(8年),而“空”样方平均持续时间最长(18年)。对一个模型时间步长进行动态预测,并将预测结果与实际平方分布进行比较,结果表明差异测度为5.4%。这说明了(时间)齐次马尔可夫链作为短期预测工具的有效性,但也留下了同质性假设在长期内是否成立的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zhurnal obshchei biologii
Zhurnal obshchei biologii 生物-生物学
自引率
25.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Публикуются статьи по теоретическим вопросам биологии, представляющие интерес для биологов любой специальности (вопросы эволюции, экологии, общей таксономии, общей цитологии, генетики, проблемы механизмов приспособления живых организмов к условиям существования, закономерности развития организмов, бионика и т. д.), основанные на новом оригинальном фактическом материале или же подводящие итоги работы того или иного научного коллектива. Помимо теоретических статей, помещаются рецензии на новые книги российских и зарубежных биологов, а также информация о международных конгрессах и общероссийских совещаниях по важнейшим проблемам биологии.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信