A Spatio-Temporal Model and Inference Tools for Longitudinal Count Data on Multicolor Cell Growth.

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
PuXue Qiao, Christina Mølck, Davide Ferrari, Frédéric Hollande
{"title":"A Spatio-Temporal Model and Inference Tools for Longitudinal Count Data on Multicolor Cell Growth.","authors":"PuXue Qiao,&nbsp;Christina Mølck,&nbsp;Davide Ferrari,&nbsp;Frédéric Hollande","doi":"10.1515/ijb-2018-0008","DOIUrl":null,"url":null,"abstract":"<p><p>Multicolor cell spatio-temporal image data have become important to investigate organ development and regeneration, malignant growth or immune responses by tracking different cell types both in vivo and in vitro. Statistical modeling of image data from common longitudinal cell experiments poses significant challenges due to the presence of complex spatio-temporal interactions between different cell types and difficulties related to measurement of single cell trajectories. Current analysis methods focus mainly on univariate cases, often not considering the spatio-temporal effects affecting cell growth between different cell populations. In this paper, we propose a conditional spatial autoregressive model to describe multivariate count cell data on the lattice, and develop inference tools. The proposed methodology is computationally tractable and enables researchers to estimate a complete statistical model of multicolor cell growth. Our methodology is applied on real experimental data where we investigate how interactions between cancer cells and fibroblasts affect their growth, which are normally present in the tumor microenvironment. We also compare the performance of our methodology to the multivariate conditional autoregressive (MCAR) model in both simulations and real data applications.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"14 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0008","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Multicolor cell spatio-temporal image data have become important to investigate organ development and regeneration, malignant growth or immune responses by tracking different cell types both in vivo and in vitro. Statistical modeling of image data from common longitudinal cell experiments poses significant challenges due to the presence of complex spatio-temporal interactions between different cell types and difficulties related to measurement of single cell trajectories. Current analysis methods focus mainly on univariate cases, often not considering the spatio-temporal effects affecting cell growth between different cell populations. In this paper, we propose a conditional spatial autoregressive model to describe multivariate count cell data on the lattice, and develop inference tools. The proposed methodology is computationally tractable and enables researchers to estimate a complete statistical model of multicolor cell growth. Our methodology is applied on real experimental data where we investigate how interactions between cancer cells and fibroblasts affect their growth, which are normally present in the tumor microenvironment. We also compare the performance of our methodology to the multivariate conditional autoregressive (MCAR) model in both simulations and real data applications.

多色细胞生长纵向计数数据的时空模型和推理工具。
多色细胞的时空图像数据已成为重要的研究器官的发育和再生,恶性生长或免疫反应,通过跟踪不同类型的细胞在体内和体外。由于不同细胞类型之间存在复杂的时空相互作用,以及与单细胞轨迹测量相关的困难,来自普通纵向细胞实验的图像数据的统计建模带来了重大挑战。目前的分析方法主要集中在单变量的情况下,往往没有考虑时空效应对不同细胞群体之间细胞生长的影响。在本文中,我们提出了一个条件空间自回归模型来描述格上的多元计数细胞数据,并开发了推理工具。所提出的方法在计算上易于处理,使研究人员能够估计出多色细胞生长的完整统计模型。我们的方法应用于真实的实验数据,我们研究了癌细胞和成纤维细胞之间的相互作用如何影响它们的生长,这通常存在于肿瘤微环境中。我们还在模拟和实际数据应用中比较了我们的方法与多变量条件自回归(MCAR)模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信