Bioavailability of Orally Delivered Alpha-Tocopherol by Poly(Lactic-Co-Glycolic) Acid (PLGA) Nanoparticles and Chitosan Covered PLGA Nanoparticles in F344 Rats.
{"title":"Bioavailability of Orally Delivered Alpha-Tocopherol by Poly(Lactic-Co-Glycolic) Acid (PLGA) Nanoparticles and Chitosan Covered PLGA Nanoparticles in F344 Rats.","authors":"Lacey C Simon, Rhett W Stout, Cristina Sabliov","doi":"10.5772/63305","DOIUrl":null,"url":null,"abstract":"<p><p>It is hypothesized that the bioavailability of αT (alpha-tocopherol), an antioxidant, can be improved when delivered by poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) and chitosan covered PLGA nanoparticles (PLGA-Chi NPs), and that the mucoadhesive properties of chitosan may enhance absorption of αT. PLGA and PLGA-Chi NPs were characterized by measuring entrapment efficiency, size, polydispersity, and zeta potential. Nanoparticle physical stability, chemical stability of entrapped αT, and release kinetics were also measured. Pharmacokinetic studies were conducted by administering PLGA (αT) NPs, PLGA-Chi (αT) NPs, and free αT via oral gavage in rats. The size and zeta potential of the two particle systems were 97.87 ± 2.63 nm and -36.2 ± 1.31 mV for PLGA(αT) NPs, and 134 ± 2.05 nm and 38.0 ± 2.90 mV for PLGA-Chi (αT) nanoparticles in DI water. The particle systems showed to be stable during various in vitro assays. Bioavailability of nanodelivered αT was improved compared to the free αT, by 170% and 121% for PLGA and PLGA-Chi NPs, respectively. It was concluded that while chitosan did not further improved bioavailability of αT, PLGA NPs protected the entrapped drug from the GI environment degradation and proved to be an effective delivery system for αT.</p>","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"3 ","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/63305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
It is hypothesized that the bioavailability of αT (alpha-tocopherol), an antioxidant, can be improved when delivered by poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) and chitosan covered PLGA nanoparticles (PLGA-Chi NPs), and that the mucoadhesive properties of chitosan may enhance absorption of αT. PLGA and PLGA-Chi NPs were characterized by measuring entrapment efficiency, size, polydispersity, and zeta potential. Nanoparticle physical stability, chemical stability of entrapped αT, and release kinetics were also measured. Pharmacokinetic studies were conducted by administering PLGA (αT) NPs, PLGA-Chi (αT) NPs, and free αT via oral gavage in rats. The size and zeta potential of the two particle systems were 97.87 ± 2.63 nm and -36.2 ± 1.31 mV for PLGA(αT) NPs, and 134 ± 2.05 nm and 38.0 ± 2.90 mV for PLGA-Chi (αT) nanoparticles in DI water. The particle systems showed to be stable during various in vitro assays. Bioavailability of nanodelivered αT was improved compared to the free αT, by 170% and 121% for PLGA and PLGA-Chi NPs, respectively. It was concluded that while chitosan did not further improved bioavailability of αT, PLGA NPs protected the entrapped drug from the GI environment degradation and proved to be an effective delivery system for αT.
NanobiomedicineBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍:
Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.