Fonduer: Knowledge Base Construction from Richly Formatted Data.

Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip Levis, Christopher Ré
{"title":"Fonduer: Knowledge Base Construction from Richly Formatted Data.","authors":"Sen Wu,&nbsp;Luke Hsiao,&nbsp;Xiao Cheng,&nbsp;Braden Hancock,&nbsp;Theodoros Rekatsinas,&nbsp;Philip Levis,&nbsp;Christopher Ré","doi":"10.1145/3183713.3183729","DOIUrl":null,"url":null,"abstract":"<p><p>We focus on knowledge base construction (KBC) from richly formatted data. In contrast to KBC from text or tabular data, KBC from richly formatted data aims to extract relations conveyed jointly via textual, structural, tabular, and visual expressions. We introduce Fonduer, a machine-learning-based KBC system for richly formatted data. Fonduer presents a new data model that accounts for three challenging characteristics of richly formatted data: (1) prevalent document-level relations, (2) multimodality, and (3) data variety. Fonduer uses a new deep-learning model to automatically capture the representation (i.e., features) needed to learn how to extract relations from richly formatted data. Finally, Fonduer provides a new programming model that enables users to convert domain expertise, based on multiple modalities of information, to meaningful signals of supervision for training a KBC system. Fonduer-based KBC systems are in production for a range of use cases, including at a major online retailer. We compare Fonduer against state-of-the-art KBC approaches in four different domains. We show that Fonduer achieves an average improvement of 41 F1 points on the quality of the output knowledge base-and in some cases produces up to 1.87× the number of correct entries-compared to expert-curated public knowledge bases. We also conduct a user study to assess the usability of Fonduer's new programming model. We show that after using Fonduer for only 30 minutes, non-domain experts are able to design KBC systems that achieve on average 23 F1 points higher quality than traditional machine-learning-based KBC approaches.</p>","PeriodicalId":87344,"journal":{"name":"Proceedings. ACM-SIGMOD International Conference on Management of Data","volume":"2018 ","pages":"1301-1316"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3183713.3183729","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM-SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92

Abstract

We focus on knowledge base construction (KBC) from richly formatted data. In contrast to KBC from text or tabular data, KBC from richly formatted data aims to extract relations conveyed jointly via textual, structural, tabular, and visual expressions. We introduce Fonduer, a machine-learning-based KBC system for richly formatted data. Fonduer presents a new data model that accounts for three challenging characteristics of richly formatted data: (1) prevalent document-level relations, (2) multimodality, and (3) data variety. Fonduer uses a new deep-learning model to automatically capture the representation (i.e., features) needed to learn how to extract relations from richly formatted data. Finally, Fonduer provides a new programming model that enables users to convert domain expertise, based on multiple modalities of information, to meaningful signals of supervision for training a KBC system. Fonduer-based KBC systems are in production for a range of use cases, including at a major online retailer. We compare Fonduer against state-of-the-art KBC approaches in four different domains. We show that Fonduer achieves an average improvement of 41 F1 points on the quality of the output knowledge base-and in some cases produces up to 1.87× the number of correct entries-compared to expert-curated public knowledge bases. We also conduct a user study to assess the usability of Fonduer's new programming model. We show that after using Fonduer for only 30 minutes, non-domain experts are able to design KBC systems that achieve on average 23 F1 points higher quality than traditional machine-learning-based KBC approaches.

Abstract Image

Abstract Image

Abstract Image

Fonduer:从格式丰富的数据构建知识库。
我们关注的是从格式丰富的数据中构建知识库。与来自文本或表格数据的KBC相比,来自格式丰富的数据的KBC旨在提取通过文本、结构、表格和视觉表达式共同传达的关系。我们介绍Fonduer,一个基于机器学习的KBC系统,用于丰富格式的数据。Fonduer提出了一个新的数据模型,该模型考虑了富格式数据的三个具有挑战性的特征:(1)普遍的文档级关系,(2)多模态,(3)数据多样性。Fonduer使用一种新的深度学习模型来自动捕获学习如何从格式丰富的数据中提取关系所需的表示(即特征)。最后,Fonduer提供了一种新的编程模型,使用户能够将基于多种形式的信息的领域专业知识转换为训练KBC系统的有意义的监督信号。基于fonduer的KBC系统已投入生产,适用于一系列用例,包括一家主要的在线零售商。我们比较Fonduer与最先进的KBC方法在四个不同的领域。我们表明,与专家管理的公共知识库相比,Fonduer在输出知识库的质量上平均提高了41个F1点,在某些情况下产生的正确条目数量高达1.87倍。我们还进行了一项用户研究,以评估Fonduer新编程模型的可用性。我们表明,在使用Fonduer仅30分钟后,非领域专家能够设计出比传统的基于机器学习的KBC方法平均高23个F1点的KBC系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信