Dirichlet Process Mixture Model for Correcting Technical Variation in Single-Cell Gene Expression Data.

Sandhya Prabhakaran, Elham Azizi, Ambrose Carr, Dana Pe'er
{"title":"Dirichlet Process Mixture Model for Correcting Technical Variation in Single-Cell Gene Expression Data.","authors":"Sandhya Prabhakaran,&nbsp;Elham Azizi,&nbsp;Ambrose Carr,&nbsp;Dana Pe'er","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an iterative normalization and clustering method for single-cell gene expression data. The emerging technology of single-cell RNA-seq gives access to gene expression measurements for thousands of cells, allowing discovery and characterization of cell types. However, the data is confounded by technical variation emanating from experimental errors and cell type-specific biases. Current approaches perform a global normalization prior to analyzing biological signals, which does not resolve missing data or variation dependent on latent cell types. Our model is formulated as a hierarchical Bayesian mixture model with cell-specific scalings that aid the iterative normalization and clustering of cells, teasing apart technical variation from biological signals. We demonstrate that this approach is superior to global normalization followed by clustering. We show identifiability and weak convergence guarantees of our method and present a scalable Gibbs inference algorithm. This method improves cluster inference in both synthetic and real single-cell data compared with previous methods, and allows easy interpretation and recovery of the underlying structure and cell types.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"48 ","pages":"1070-1079"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004614/pdf/nihms972080.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an iterative normalization and clustering method for single-cell gene expression data. The emerging technology of single-cell RNA-seq gives access to gene expression measurements for thousands of cells, allowing discovery and characterization of cell types. However, the data is confounded by technical variation emanating from experimental errors and cell type-specific biases. Current approaches perform a global normalization prior to analyzing biological signals, which does not resolve missing data or variation dependent on latent cell types. Our model is formulated as a hierarchical Bayesian mixture model with cell-specific scalings that aid the iterative normalization and clustering of cells, teasing apart technical variation from biological signals. We demonstrate that this approach is superior to global normalization followed by clustering. We show identifiability and weak convergence guarantees of our method and present a scalable Gibbs inference algorithm. This method improves cluster inference in both synthetic and real single-cell data compared with previous methods, and allows easy interpretation and recovery of the underlying structure and cell types.

Abstract Image

Abstract Image

Abstract Image

校正单细胞基因表达数据技术变异的Dirichlet过程混合模型。
介绍了一种单细胞基因表达数据的迭代归一化聚类方法。单细胞RNA-seq的新兴技术提供了数千个细胞的基因表达测量,允许发现和表征细胞类型。然而,由于实验错误和细胞类型特异性偏差引起的技术变化,数据混淆了。目前的方法在分析生物信号之前执行全局归一化,这不能解决依赖于潜在细胞类型的缺失数据或变化。我们的模型被制定为具有细胞特异性缩放的分层贝叶斯混合模型,有助于细胞的迭代归一化和聚类,从生物信号中剔除技术变化。我们证明了这种方法优于全局归一化之后的聚类。我们证明了该方法的可辨识性和弱收敛性保证,并给出了一个可扩展的Gibbs推理算法。与以前的方法相比,该方法改进了合成和真实单细胞数据的聚类推断,并且可以轻松地解释和恢复底层结构和细胞类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信