Short periods of darkness fail to restore visual or neural plasticity in adult cats.

IF 1.1 4区 医学 Q4 NEUROSCIENCES
Kaitlyn D Holman, Kevin R Duffy, Donald E Mitchell
{"title":"Short periods of darkness fail to restore visual or neural plasticity in adult cats.","authors":"Kaitlyn D Holman,&nbsp;Kevin R Duffy,&nbsp;Donald E Mitchell","doi":"10.1017/S0952523817000335","DOIUrl":null,"url":null,"abstract":"<p><p>It has been shown that the visual acuity loss experienced by the deprived eye of kittens following an early period of monocular deprivation (MD) can be alleviated rapidly following 10 days of complete darkness when imposed even as late as 14 weeks of age. To examine whether 10 days of darkness conferred benefits at any age, we measured the extent of recovery of the visual acuity of the deprived eye following the darkness imposed on adult cats that had received the same early period of MD as used in prior experiments conducted on kittens. Parallel studies conducted on different animals examined the extent to which darkness changed the magnitude of the MD-induced laminar differences of the cell soma size and immunoreactivity for the neurofilament (NF) protein in the dorsal lateral geniculate nucleus (dLGN). The results indicated that 10 days of darkness imposed at one year of age neither alleviated the acuity loss of the deprived eye induced by an earlier period of MD nor did it decrease the concurrent lamina differences of the soma size or NF loss in the dLGN.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523817000335","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523817000335","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 11

Abstract

It has been shown that the visual acuity loss experienced by the deprived eye of kittens following an early period of monocular deprivation (MD) can be alleviated rapidly following 10 days of complete darkness when imposed even as late as 14 weeks of age. To examine whether 10 days of darkness conferred benefits at any age, we measured the extent of recovery of the visual acuity of the deprived eye following the darkness imposed on adult cats that had received the same early period of MD as used in prior experiments conducted on kittens. Parallel studies conducted on different animals examined the extent to which darkness changed the magnitude of the MD-induced laminar differences of the cell soma size and immunoreactivity for the neurofilament (NF) protein in the dorsal lateral geniculate nucleus (dLGN). The results indicated that 10 days of darkness imposed at one year of age neither alleviated the acuity loss of the deprived eye induced by an earlier period of MD nor did it decrease the concurrent lamina differences of the soma size or NF loss in the dLGN.

短时间的黑暗无法恢复成年猫的视觉或神经可塑性。
研究表明,即使是在14周龄时,在10天的完全黑暗后,早期单眼剥夺(MD)后被剥夺的小猫的视力下降也能迅速减轻。为了检验10天的黑暗是否对任何年龄的猫都有好处,我们测量了成年猫在接受与之前在小猫身上进行的实验相同的早期MD治疗后,被剥夺的眼睛的视力恢复程度。在不同动物身上进行的平行研究检查了黑暗在多大程度上改变了md诱导的细胞体细胞大小的层流差异和背外侧膝状核(dLGN)中神经丝(NF)蛋白的免疫反应性。结果表明,1岁时10天的黑暗既没有减轻早期MD引起的失明眼的视力丧失,也没有减少dLGN中体细胞大小的并发层差异或NF丧失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信