Marquis Philip Vawter, Robert Philibert, Brandi Rollins, Patricia L Ruppel, Terry W Osborn
{"title":"Exon Array Biomarkers for the Differential Diagnosis of Schizophrenia and Bipolar Disorder.","authors":"Marquis Philip Vawter, Robert Philibert, Brandi Rollins, Patricia L Ruppel, Terry W Osborn","doi":"10.1159/000485800","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed potential blood-based biomarker tests for diagnosing and differentiating schizophrenia (SZ), bipolar disorder type I (BD), and normal control (NC) subjects using mRNA gene expression signatures. A total of 90 subjects (<i>n</i> = 30 each for the three groups of subjects) provided blood samples at two visits. The Affymetrix exon microarray was used to profile the expression of over 1.4 million probesets. We selected potential biomarker panels using the temporal stability of the probesets and also back-tested them at two different visits for each subject. The 18-gene biomarker panels, using logistic regression modeling, correctly differentiated the three groups of subjects with high accuracy across the two different clinical visits (83-88% accuracy). The results are also consistent with the actual data and the \"leave-one-out\" analyses, indicating that the models should be predictive when applied to independent data cohorts. Many of the SZ and BD subjects were taking antipsychotic and mood stabilizer medications at the time of blood draw, raising the possibility that these drugs could have affected some of the differential transcription signatures. Using an independent Illumina data set of gene expression data from antipsychotic medication-free SZ subjects, the 18-gene biomarker panels produced a receiver operating characteristic curve accuracy greater than 0.866 in patients that were less than 30 years of age and medication free. We confirmed select transcripts by quantitative PCR and the nCounter® System. The episodic nature of psychiatric disorders might lead to highly variable results depending on when blood is collected in relation to the severity of the disease/symptoms. We have found stable trait gene panel markers for lifelong psychiatric disorders that may have diagnostic utility in younger undiagnosed subjects where there is a critical unmet need. The study requires replication in subjects for ultimate proof of the utility of the differential diagnosis.</p>","PeriodicalId":18957,"journal":{"name":"Molecular Neuropsychiatry","volume":"3 4","pages":"197-213"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000485800","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neuropsychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000485800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This study developed potential blood-based biomarker tests for diagnosing and differentiating schizophrenia (SZ), bipolar disorder type I (BD), and normal control (NC) subjects using mRNA gene expression signatures. A total of 90 subjects (n = 30 each for the three groups of subjects) provided blood samples at two visits. The Affymetrix exon microarray was used to profile the expression of over 1.4 million probesets. We selected potential biomarker panels using the temporal stability of the probesets and also back-tested them at two different visits for each subject. The 18-gene biomarker panels, using logistic regression modeling, correctly differentiated the three groups of subjects with high accuracy across the two different clinical visits (83-88% accuracy). The results are also consistent with the actual data and the "leave-one-out" analyses, indicating that the models should be predictive when applied to independent data cohorts. Many of the SZ and BD subjects were taking antipsychotic and mood stabilizer medications at the time of blood draw, raising the possibility that these drugs could have affected some of the differential transcription signatures. Using an independent Illumina data set of gene expression data from antipsychotic medication-free SZ subjects, the 18-gene biomarker panels produced a receiver operating characteristic curve accuracy greater than 0.866 in patients that were less than 30 years of age and medication free. We confirmed select transcripts by quantitative PCR and the nCounter® System. The episodic nature of psychiatric disorders might lead to highly variable results depending on when blood is collected in relation to the severity of the disease/symptoms. We have found stable trait gene panel markers for lifelong psychiatric disorders that may have diagnostic utility in younger undiagnosed subjects where there is a critical unmet need. The study requires replication in subjects for ultimate proof of the utility of the differential diagnosis.