Michał Aleksander Ciach, Anna Muszewska, Paweł Górecki
{"title":"Locus-aware decomposition of gene trees with respect to polytomous species trees.","authors":"Michał Aleksander Ciach, Anna Muszewska, Paweł Górecki","doi":"10.1186/s13015-018-0128-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Horizontal gene transfer (HGT), a process of acquisition and fixation of foreign genetic material, is an important biological phenomenon. Several approaches to HGT inference have been proposed. However, most of them either rely on approximate, non-phylogenetic methods or on the tree reconciliation, which is computationally intensive and sensitive to parameter values.</p><p><strong>Results: </strong>We investigate the locus tree inference problem as a possible alternative that combines the advantages of both approaches. We present several algorithms to solve the problem in the parsimony framework. We introduce a novel tree mapping, which allows us to obtain a heuristic solution to the problems of locus tree inference and duplication classification.</p><p><strong>Conclusions: </strong>Our approach allows for faster comparisons of gene and species trees and improves known algorithms for duplication inference in the presence of polytomies in the species trees. We have implemented our algorithms in a software tool available at https://github.com/mciach/LocusTreeInference.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"13 ","pages":"11"},"PeriodicalIF":1.7000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13015-018-0128-1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-018-0128-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Horizontal gene transfer (HGT), a process of acquisition and fixation of foreign genetic material, is an important biological phenomenon. Several approaches to HGT inference have been proposed. However, most of them either rely on approximate, non-phylogenetic methods or on the tree reconciliation, which is computationally intensive and sensitive to parameter values.
Results: We investigate the locus tree inference problem as a possible alternative that combines the advantages of both approaches. We present several algorithms to solve the problem in the parsimony framework. We introduce a novel tree mapping, which allows us to obtain a heuristic solution to the problems of locus tree inference and duplication classification.
Conclusions: Our approach allows for faster comparisons of gene and species trees and improves known algorithms for duplication inference in the presence of polytomies in the species trees. We have implemented our algorithms in a software tool available at https://github.com/mciach/LocusTreeInference.
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.