Real-Time Medical Video Denoising with Deep Learning: Application to Angiography.

Praneeth Sadda, Taha Qarni
{"title":"Real-Time Medical Video Denoising with Deep Learning: Application to Angiography.","authors":"Praneeth Sadda,&nbsp;Taha Qarni","doi":"10.5120/ijais2018451755","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes the design, training, and evaluation of a deep neural network for removing noise from medical fluoroscopy videos. The method described in this work, unlike the current standard techniques for video denoising, is able to deliver a result quickly enough to be used in real-time scenarios. Furthermore, this method is able to produce results of a similar quality to the existing industry-standard denoising techniques.</p>","PeriodicalId":92376,"journal":{"name":"International journal of applied information systems","volume":"12 13","pages":"22-28"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5120/ijais2018451755","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied information systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5120/ijais2018451755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper describes the design, training, and evaluation of a deep neural network for removing noise from medical fluoroscopy videos. The method described in this work, unlike the current standard techniques for video denoising, is able to deliver a result quickly enough to be used in real-time scenarios. Furthermore, this method is able to produce results of a similar quality to the existing industry-standard denoising techniques.

Abstract Image

Abstract Image

Abstract Image

基于深度学习的实时医学视频去噪:在血管造影中的应用。
本文描述了用于去除医学透视视频噪声的深度神经网络的设计、训练和评估。与目前视频去噪的标准技术不同,这项工作中描述的方法能够快速提供结果,足以在实时场景中使用。此外,该方法能够产生与现有行业标准去噪技术相似的质量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信