Jeffrey M.H. Liu , Xiaomin Zhang , Shelby Joe , Xunrong Luo , Lonnie D. Shea
{"title":"Evaluation of biomaterial scaffold delivery of IL-33 as a localized immunomodulatory agent to support cell transplantation in adipose tissue","authors":"Jeffrey M.H. Liu , Xiaomin Zhang , Shelby Joe , Xunrong Luo , Lonnie D. Shea","doi":"10.1016/j.regen.2018.01.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p><span><span>The development of novel immunomodulatory strategies that might decrease the need for systemic immune suppression would greatly enable the utility of cell-based therapies. </span>Cell transplantation<span> on biomaterial scaffolds offers a unique opportunity to engineer a site to locally polarize immunogenic antigen generation. Herein, we investigated the localized delivery of IL-33, which is a novel cytokine that has been shown to have beneficial immunomodulatory effects in certain transplant models as mediating anti-inflammatory properties in the </span></span>adipose tissue, to determine its feasibility for use as an immunomodulatory agent.</p></div><div><h3>Results</h3><p>Localized IL-33 delivery from poly(lactide-co-glycolide) (PLG) scaffolds implanted into the epididymal fat specifically increased the Foxp3<sup>+</sup> population of CD4<sup>+</sup><span><span> T cells in both blank scaffold </span>implants<span><span> and scaffolds seeded with allogeneic islets. In allogeneic </span>islet transplantation, we found IL-33 delivery results in a local upregulation of graft-protective T cells where 80% of the local CD4</span></span><sup>+</sup> population is Foxp3<sup>+</sup> and overall numbers of graft destructive CD8<sup>+</sup><span> T cells are decreased, resulting in a prolonged graft survival<span>. Interestingly, local IL-33 also delayed islet engraftment by primarily inducing a local upregulation of Th2 cytokines, including IL-4 and IL-5, leading to increased populations of ST2</span></span><sup>+</sup><span> Type 2 innate lymphoid cells<span> (ILC2s) and Siglec F</span></span><sup>+</sup><span> eosinophils.</span></p></div><div><h3>Conclusions</h3><p>These results suggest that local IL-33 delivery from biomaterial scaffolds can be used to increase Tregs enriched in adipose tissue and reduce graft-destructive T cell populations but may also promote innate cell populations that can delay cell engraftment.</p></div>","PeriodicalId":94333,"journal":{"name":"Journal of immunology and regenerative medicine","volume":"1 ","pages":"Pages 1-12"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.regen.2018.01.003","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology and regenerative medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468498817300148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Introduction
The development of novel immunomodulatory strategies that might decrease the need for systemic immune suppression would greatly enable the utility of cell-based therapies. Cell transplantation on biomaterial scaffolds offers a unique opportunity to engineer a site to locally polarize immunogenic antigen generation. Herein, we investigated the localized delivery of IL-33, which is a novel cytokine that has been shown to have beneficial immunomodulatory effects in certain transplant models as mediating anti-inflammatory properties in the adipose tissue, to determine its feasibility for use as an immunomodulatory agent.
Results
Localized IL-33 delivery from poly(lactide-co-glycolide) (PLG) scaffolds implanted into the epididymal fat specifically increased the Foxp3+ population of CD4+ T cells in both blank scaffold implants and scaffolds seeded with allogeneic islets. In allogeneic islet transplantation, we found IL-33 delivery results in a local upregulation of graft-protective T cells where 80% of the local CD4+ population is Foxp3+ and overall numbers of graft destructive CD8+ T cells are decreased, resulting in a prolonged graft survival. Interestingly, local IL-33 also delayed islet engraftment by primarily inducing a local upregulation of Th2 cytokines, including IL-4 and IL-5, leading to increased populations of ST2+ Type 2 innate lymphoid cells (ILC2s) and Siglec F+ eosinophils.
Conclusions
These results suggest that local IL-33 delivery from biomaterial scaffolds can be used to increase Tregs enriched in adipose tissue and reduce graft-destructive T cell populations but may also promote innate cell populations that can delay cell engraftment.