{"title":"MicroRNAs and the neural crest: From induction to differentiation","authors":"Andrea M.J. Weiner","doi":"10.1016/j.mod.2018.05.009","DOIUrl":null,"url":null,"abstract":"<div><p>MicroRNAs are small noncoding RNAs that can control gene expression by base pairing to partially complementary mRNAs. Regulation by microRNAs plays essential roles in diverse biological processes such as neural crest formation during embryonic development. The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. Gene regulatory networks that coordinate neural crest cell specification and differentiation have been considerably studied so far. Although it is known that microRNAs play important roles in neural crest development, posttranscriptional regulation by microRNAs has not been deeply characterized yet. This review is focused on the microRNAs identified so far in order to regulate gene expression of neural crest cells during vertebrate development.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"154 ","pages":"Pages 98-106"},"PeriodicalIF":2.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.05.009","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318300522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 24
Abstract
MicroRNAs are small noncoding RNAs that can control gene expression by base pairing to partially complementary mRNAs. Regulation by microRNAs plays essential roles in diverse biological processes such as neural crest formation during embryonic development. The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. Gene regulatory networks that coordinate neural crest cell specification and differentiation have been considerably studied so far. Although it is known that microRNAs play important roles in neural crest development, posttranscriptional regulation by microRNAs has not been deeply characterized yet. This review is focused on the microRNAs identified so far in order to regulate gene expression of neural crest cells during vertebrate development.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.