A General Method for Predicting Amino Acid Residues Experiencing Hydrogen Exchange.

Boshen Wang, Alan Perez-Rathke, Renhao Li, Jie Liang
{"title":"A General Method for Predicting Amino Acid Residues Experiencing Hydrogen Exchange.","authors":"Boshen Wang, Alan Perez-Rathke, Renhao Li, Jie Liang","doi":"10.1109/BHI.2018.8333438","DOIUrl":null,"url":null,"abstract":"<p><p>Information on protein hydrogen exchange can help delineate key regions involved in protein-protein interactions and provides important insight towards determining functional roles of genetic variants and their possible mechanisms in disease processes. Previous studies have shown that the degree of hydrogen exchange is affected by hydrogen bond formations, solvent accessibility, proximity to other residues, and experimental conditions. However, a general predictive method for identifying residues capable of hydrogen exchange transferable to a broad set of proteins is lacking. We have developed a machine learning method based on random forest that can predict whether a residue experiences hydrogen exchange. Using data from the Start2Fold database, which contains information on 13,306 residues (3,790 of which experience hydrogen exchange and 9,516 which do not exchange), our method achieves good performance. Specifically, we achieve an overall out-of-bag (OOB) error, an unbiased estimate of the test set error, of 20.3 percent. Using a randomly selected test data set consisting of 500 residues experiencing hydrogen exchange and 500 which do not, our method achieves an accuracy of 0.79, a recall of 0.74, a precision of 0.82, and an F1 score of 0.78.</p>","PeriodicalId":72024,"journal":{"name":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","volume":"2018 ","pages":"341-344"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957487/pdf/nihms950122.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2018.8333438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information on protein hydrogen exchange can help delineate key regions involved in protein-protein interactions and provides important insight towards determining functional roles of genetic variants and their possible mechanisms in disease processes. Previous studies have shown that the degree of hydrogen exchange is affected by hydrogen bond formations, solvent accessibility, proximity to other residues, and experimental conditions. However, a general predictive method for identifying residues capable of hydrogen exchange transferable to a broad set of proteins is lacking. We have developed a machine learning method based on random forest that can predict whether a residue experiences hydrogen exchange. Using data from the Start2Fold database, which contains information on 13,306 residues (3,790 of which experience hydrogen exchange and 9,516 which do not exchange), our method achieves good performance. Specifically, we achieve an overall out-of-bag (OOB) error, an unbiased estimate of the test set error, of 20.3 percent. Using a randomly selected test data set consisting of 500 residues experiencing hydrogen exchange and 500 which do not, our method achieves an accuracy of 0.79, a recall of 0.74, a precision of 0.82, and an F1 score of 0.78.

Abstract Image

Abstract Image

Abstract Image

预测发生氢交换的氨基酸残基的一般方法。
有关蛋白质氢交换的信息有助于划定蛋白质-蛋白质相互作用的关键区域,并为确定遗传变异的功能作用及其在疾病过程中的可能机制提供重要的洞察力。以往的研究表明,氢交换的程度受氢键的形成、溶剂的可及性、与其他残基的接近程度以及实验条件的影响。然而,目前还缺乏一种通用的预测方法来识别能够进行氢交换的残基,并将其应用于大量蛋白质。我们开发了一种基于随机森林的机器学习方法,可以预测残基是否发生氢交换。Start2Fold 数据库包含 13,306 个残基(其中 3,790 个会发生氢交换,9,516 个不会发生氢交换)的信息。具体来说,我们的总体袋外(OOB)误差(测试集误差的无偏估计值)为 20.3%。使用随机选取的测试数据集(包括 500 个发生氢交换的残基和 500 个未发生氢交换的残基),我们的方法获得了 0.79 的准确率、0.74 的召回率、0.82 的精确率和 0.78 的 F1 分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信