Gradient estimates and Liouville-type theorems for a weighted nonlinear elliptic equation.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-05-10 DOI:10.1186/s13660-018-1705-z
Bingqing Ma, Yongli Dong
{"title":"Gradient estimates and Liouville-type theorems for a weighted nonlinear elliptic equation.","authors":"Bingqing Ma,&nbsp;Yongli Dong","doi":"10.1186/s13660-018-1705-z","DOIUrl":null,"url":null,"abstract":"<p><p>We consider gradient estimates for positive solutions to the following nonlinear elliptic equation on a smooth metric measure space [Formula: see text]: [Formula: see text] where <i>a</i>, <i>b</i> are two real constants. When the ∞-Bakry-Émery Ricci curvature is bounded from below, we obtain a global gradient estimate which is not dependent on [Formula: see text]. In particular, we find that any bounded positive solution of the above equation must be constant under some suitable assumptions.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1705-z","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1705-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

We consider gradient estimates for positive solutions to the following nonlinear elliptic equation on a smooth metric measure space [Formula: see text]: [Formula: see text] where a, b are two real constants. When the ∞-Bakry-Émery Ricci curvature is bounded from below, we obtain a global gradient estimate which is not dependent on [Formula: see text]. In particular, we find that any bounded positive solution of the above equation must be constant under some suitable assumptions.

一类加权非线性椭圆方程的梯度估计和liouville型定理。
我们考虑光滑度量度量空间上以下非线性椭圆方程的正解的梯度估计[公式:见文]:[公式:见文],其中a, b是两个实常数。当∞-Bakry-Émery Ricci曲率从下有界时,我们得到一个不依赖于[公式:见文]的全局梯度估计。特别地,我们发现在一些适当的假设下,上述方程的任何有界正解都必须是常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信