{"title":"Refined Wirtinger-type integral inequality.","authors":"Liansheng Zhang, Shuxia Wang","doi":"10.1186/s13660-018-1700-4","DOIUrl":null,"url":null,"abstract":"<p><p>Based on the extreme value conditions of a multiple variables function, a new class of Wirtinger-type double integral inequality is established in this paper. The proposed inequality generalizes and refines the classical Wirtinger-based integral inequality and has less conservatism in comparison with Jensen's double integral inequality and other double integral inequalities in the literature. Thus, the stability criteria for delayed control systems derived by the proposed refined Wirtinger-type integral inequality are less conservative than existing results in the literature.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1700-4","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1700-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
Based on the extreme value conditions of a multiple variables function, a new class of Wirtinger-type double integral inequality is established in this paper. The proposed inequality generalizes and refines the classical Wirtinger-based integral inequality and has less conservatism in comparison with Jensen's double integral inequality and other double integral inequalities in the literature. Thus, the stability criteria for delayed control systems derived by the proposed refined Wirtinger-type integral inequality are less conservative than existing results in the literature.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.