{"title":"Using Gene Genealogies to Localize Rare Variants Associated with Complex Traits in Diploid Populations.","authors":"Charith B Karunarathna, Jinko Graham","doi":"10.1159/000486854","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Many methods can detect trait association with causal variants in candidate genomic regions; however, a comparison of their ability to localize causal variants is lacking. We extend a previous study of the detection abilities of these methods to a comparison of their localization abilities.</p><p><strong>Methods: </strong>Through coalescent simulation, we compare several popular association methods. Cases and controls are sampled from a diploid population to mimic human studies. As benchmarks for comparison, we include two methods that cluster phenotypes on the true genealogical trees: a naive Mantel test considered previously in haploid populations and an extension that takes into account whether case haplotypes carry a causal variant. We first work through a simulated dataset to illustrate the methods. We then perform a simulation study to score the localization and detection properties.</p><p><strong>Results: </strong>In our simulations, the association signal was localized least precisely by the naive Mantel test and most precisely by its extension. Most other approaches had intermediate performance similar to the single-variant Fisher exact test.</p><p><strong>Conclusions: </strong>Our results confirm earlier findings in haploid populations about potential gains in performance from genealogy-based approaches. They also highlight differences between haploid and diploid populations when localizing and detecting causal variants.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":"83 1","pages":"30-39"},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000486854","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000486854","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 2
Abstract
Background and aims: Many methods can detect trait association with causal variants in candidate genomic regions; however, a comparison of their ability to localize causal variants is lacking. We extend a previous study of the detection abilities of these methods to a comparison of their localization abilities.
Methods: Through coalescent simulation, we compare several popular association methods. Cases and controls are sampled from a diploid population to mimic human studies. As benchmarks for comparison, we include two methods that cluster phenotypes on the true genealogical trees: a naive Mantel test considered previously in haploid populations and an extension that takes into account whether case haplotypes carry a causal variant. We first work through a simulated dataset to illustrate the methods. We then perform a simulation study to score the localization and detection properties.
Results: In our simulations, the association signal was localized least precisely by the naive Mantel test and most precisely by its extension. Most other approaches had intermediate performance similar to the single-variant Fisher exact test.
Conclusions: Our results confirm earlier findings in haploid populations about potential gains in performance from genealogy-based approaches. They also highlight differences between haploid and diploid populations when localizing and detecting causal variants.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.