Pablo Luis B Figueiredo, Renan C Silva, Joyce Kelly R da Silva, Chieno Suemitsu, Rosa Helena V Mourão, José Guilherme S Maia
{"title":"Chemical variability in the essential oil of leaves of Araçá (Psidium guineense Sw.), with occurrence in the Amazon.","authors":"Pablo Luis B Figueiredo, Renan C Silva, Joyce Kelly R da Silva, Chieno Suemitsu, Rosa Helena V Mourão, José Guilherme S Maia","doi":"10.1186/s13065-018-0428-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Psidium guineense, known as Araçá, is a Brazilian botanical resource with commercial application perspectives, based on the functional elements of its fruits and due to the use of its leaves as an anti-inflammatory and antibacterial agent. The essential oils of leaves of twelve specimens of Araçá were analyzed by GC and GC-MS to identify their volatile constituents and associate them with the biological activities reputed to the plant.</p><p><strong>Results: </strong>In a total of 157 identified compounds, limonene, α-pinene, β-caryophyllene, epi-β-bisabolol, caryophyllene oxide, β-bisabolene, α-copaene, myrcene, muurola-4,10(14)-dien-1-β-ol, β-bisabolol, and ar-curcumene were the primary components in descending order up to 5%. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) displayed three different groups with the following chemical types: limonene/α-pinene, β-bisabolene/epi-β-bisabolol, and β-caryophyllene/caryophyllene oxide. With the previous description of another chemical type rich in spathulenol, it is now understood that at least four different chemotypes for P. guineense should occur.</p><p><strong>Conclusions: </strong>In addition to the use of the Araçá fruits, which are rich in minerals and functional elements, it should be borne in mind that the knowledge of the chemical composition of the essential oils of leaves of their different chemical types may contribute to the selection of varieties with more significant biological activity.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"52"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0428-z","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0428-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 16
Abstract
Background: Psidium guineense, known as Araçá, is a Brazilian botanical resource with commercial application perspectives, based on the functional elements of its fruits and due to the use of its leaves as an anti-inflammatory and antibacterial agent. The essential oils of leaves of twelve specimens of Araçá were analyzed by GC and GC-MS to identify their volatile constituents and associate them with the biological activities reputed to the plant.
Results: In a total of 157 identified compounds, limonene, α-pinene, β-caryophyllene, epi-β-bisabolol, caryophyllene oxide, β-bisabolene, α-copaene, myrcene, muurola-4,10(14)-dien-1-β-ol, β-bisabolol, and ar-curcumene were the primary components in descending order up to 5%. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) displayed three different groups with the following chemical types: limonene/α-pinene, β-bisabolene/epi-β-bisabolol, and β-caryophyllene/caryophyllene oxide. With the previous description of another chemical type rich in spathulenol, it is now understood that at least four different chemotypes for P. guineense should occur.
Conclusions: In addition to the use of the Araçá fruits, which are rich in minerals and functional elements, it should be borne in mind that the knowledge of the chemical composition of the essential oils of leaves of their different chemical types may contribute to the selection of varieties with more significant biological activity.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry