miRNA involvement in cell cycle regulation in colorectal cancer cases.

Q2 Biochemistry, Genetics and Molecular Biology
Lila E Mullany, Jennifer S Herrick, Lori C Sakoda, Wade Samowitz, John R Stevens, Roger K Wolff, Martha L Slattery
{"title":"miRNA involvement in cell cycle regulation in colorectal cancer cases.","authors":"Lila E Mullany,&nbsp;Jennifer S Herrick,&nbsp;Lori C Sakoda,&nbsp;Wade Samowitz,&nbsp;John R Stevens,&nbsp;Roger K Wolff,&nbsp;Martha L Slattery","doi":"10.18632/genesandcancer.167","DOIUrl":null,"url":null,"abstract":"<p><p>Uncontrolled cell replication is a key component of carcinogenesis. MicroRNAs (miRNAs) regulate genes involved in checkpoints, DNA repair, and genes encoding for key proteins regulating the cell cycle. We investigated how miRNAs and mRNAs in colorectal cancer subjects interact to regulate the cell cycle. Using RNA-Seq data from 217 individuals, we analyzed differential expression (carcinoma minus normal mucosa) of 123 genes within the cell cycle pathway with differential miRNA expression, adjusting for age and sex. Multiple comparison adjustments for gene/miRNA associations were made at the gene level using an FDR <0.05. Differentially expressed miRNAs and mRNAs were tested for associations with colorectal cancer survival. MRNA and miRNA sequences were compared to identify seed region matches to support biological interpretation of the observed associations. Sixty-seven mRNAs were dysregulated with a fold change (FC) <0.67 or >1.50. Thirty-two mRNAs were associated with 48 miRNAs; 102 of 290 total associations had identified seed matches; of these, ten had negative beta coefficients. Hsa-miR-15a-5p and hsa-miR-20b-5p were associated with colorectal cancer survival with an FDR <0.05 (HR 0.86 95% CI 0.79, 0.94; HR 0.83 95% CI 0.75, 0.91 respectively). Our findings suggest that miRNAs impact mRNA translation at multiple levels within the cell cycle.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":" ","pages":"53-65"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931252/pdf/","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/genesandcancer.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 31

Abstract

Uncontrolled cell replication is a key component of carcinogenesis. MicroRNAs (miRNAs) regulate genes involved in checkpoints, DNA repair, and genes encoding for key proteins regulating the cell cycle. We investigated how miRNAs and mRNAs in colorectal cancer subjects interact to regulate the cell cycle. Using RNA-Seq data from 217 individuals, we analyzed differential expression (carcinoma minus normal mucosa) of 123 genes within the cell cycle pathway with differential miRNA expression, adjusting for age and sex. Multiple comparison adjustments for gene/miRNA associations were made at the gene level using an FDR <0.05. Differentially expressed miRNAs and mRNAs were tested for associations with colorectal cancer survival. MRNA and miRNA sequences were compared to identify seed region matches to support biological interpretation of the observed associations. Sixty-seven mRNAs were dysregulated with a fold change (FC) <0.67 or >1.50. Thirty-two mRNAs were associated with 48 miRNAs; 102 of 290 total associations had identified seed matches; of these, ten had negative beta coefficients. Hsa-miR-15a-5p and hsa-miR-20b-5p were associated with colorectal cancer survival with an FDR <0.05 (HR 0.86 95% CI 0.79, 0.94; HR 0.83 95% CI 0.75, 0.91 respectively). Our findings suggest that miRNAs impact mRNA translation at multiple levels within the cell cycle.

Abstract Image

Abstract Image

Abstract Image

miRNA参与结直肠癌病例的细胞周期调节。
不受控制的细胞复制是癌变的关键组成部分。MicroRNAs (miRNAs)调节参与检查点、DNA修复和编码调节细胞周期的关键蛋白的基因。我们研究了结肠直肠癌患者的mirna和mrna如何相互作用来调节细胞周期。利用来自217个个体的RNA-Seq数据,我们分析了细胞周期通路中123个基因的差异表达(癌减去正常粘膜),并根据年龄和性别进行了调整。使用FDR 1.50在基因水平上对基因/miRNA关联进行多次比较调整。32个mrna与48个mirna相关;290个协会中有102个确定了种子匹配;其中10个系数为负。Hsa-miR-15a-5p和hsa-miR-20b-5p与结直肠癌FDR生存率相关
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes and Cancer
Genes and Cancer Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.90
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信