Making lineage decisions with biological noise: Lessons from the early mouse embryo.

Q1 Biochemistry, Genetics and Molecular Biology
Claire S Simon, Anna-Katerina Hadjantonakis, Christian Schröter
{"title":"Making lineage decisions with biological noise: Lessons from the early mouse embryo.","authors":"Claire S Simon,&nbsp;Anna-Katerina Hadjantonakis,&nbsp;Christian Schröter","doi":"10.1002/wdev.319","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how individual cells make fate decisions that lead to the faithful formation and homeostatic maintenance of tissues is a fundamental goal of contemporary developmental and stem cell biology. Seemingly uniform populations of stem cells and multipotent progenitors display a surprising degree of heterogeneity, primarily originating from the inherent stochastic nature of molecular processes underlying gene expression. Despite this heterogeneity, lineage decisions result in tissues of a defined size and with consistent proportions of differentiated cell types. Using the early mouse embryo as a model we review recent developments that have allowed the quantification of molecular intercellular heterogeneity during cell differentiation. We first discuss the relationship between these heterogeneities and developmental cellular potential. We then review recent theoretical approaches that formalize the mechanisms underlying fate decisions in the inner cell mass of the blastocyst stage embryo. These models build on our extensive knowledge of the genetic control of fate decisions in this system and will become essential tools for a rigorous understanding of the connection between noisy molecular processes and reproducible outcomes at the multicellular level. We conclude by suggesting that cell-to-cell communication provides a mechanism to exploit and buffer intercellular variability in a self-organized process that culminates in the reproducible formation of the mature mammalian blastocyst stage embryo that is ready for implantation into the maternal uterus. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Quantitative Methods and Models.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"7 4","pages":"e319"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.319","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 58

Abstract

Understanding how individual cells make fate decisions that lead to the faithful formation and homeostatic maintenance of tissues is a fundamental goal of contemporary developmental and stem cell biology. Seemingly uniform populations of stem cells and multipotent progenitors display a surprising degree of heterogeneity, primarily originating from the inherent stochastic nature of molecular processes underlying gene expression. Despite this heterogeneity, lineage decisions result in tissues of a defined size and with consistent proportions of differentiated cell types. Using the early mouse embryo as a model we review recent developments that have allowed the quantification of molecular intercellular heterogeneity during cell differentiation. We first discuss the relationship between these heterogeneities and developmental cellular potential. We then review recent theoretical approaches that formalize the mechanisms underlying fate decisions in the inner cell mass of the blastocyst stage embryo. These models build on our extensive knowledge of the genetic control of fate decisions in this system and will become essential tools for a rigorous understanding of the connection between noisy molecular processes and reproducible outcomes at the multicellular level. We conclude by suggesting that cell-to-cell communication provides a mechanism to exploit and buffer intercellular variability in a self-organized process that culminates in the reproducible formation of the mature mammalian blastocyst stage embryo that is ready for implantation into the maternal uterus. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Quantitative Methods and Models.

Abstract Image

Abstract Image

Abstract Image

用生物噪声做出谱系决定:来自早期小鼠胚胎的教训。
了解单个细胞如何做出命运决定,从而导致组织的忠实形成和稳态维持,是当代发育和干细胞生物学的基本目标。干细胞和多能祖细胞看似一致的群体表现出令人惊讶的异质性,这主要源于基因表达背后的分子过程固有的随机性。尽管存在这种异质性,谱系决定导致组织具有确定的大小和一致比例的分化细胞类型。使用早期小鼠胚胎作为模型,我们回顾了最近的发展,已经允许在细胞分化过程中分子细胞间异质性的量化。我们首先讨论这些异质性与发育细胞潜能之间的关系。然后,我们回顾了最近的理论方法,这些理论方法形式化了囊胚期胚胎内细胞群命运决定的机制。这些模型建立在我们对该系统中命运决定的遗传控制的广泛知识的基础上,并将成为严格理解嘈杂分子过程与多细胞水平上可重复结果之间联系的重要工具。我们的结论是,细胞间的交流提供了一种机制,在一个自组织的过程中利用和缓冲细胞间的变异性,最终形成成熟的哺乳动物囊胚期胚胎,准备植入母体子宫。本文分类如下:基因表达和转录层次>细胞分化时空格局的建立>基因表达和转录层次的大小、比例和时间调控>基因网络和基因组学基因表达和转录层次>定量方法和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology. The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信