Inorganic Polyphosphate, Exopolyphosphatase, and Pho84-Like Transporters May Be Involved in Copper Resistance in Metallosphaera sedula DSM 5348T.

IF 2.3 4区 生物学 Q3 MICROBIOLOGY
Archaea-An International Microbiological Journal Pub Date : 2018-03-05 eCollection Date: 2018-01-01 DOI:10.1155/2018/5251061
Matías Rivero, Constanza Torres-Paris, Rodrigo Muñoz, Ricardo Cabrera, Claudio A Navarro, Carlos A Jerez
{"title":"Inorganic Polyphosphate, Exopolyphosphatase, and <i>Pho84</i>-Like Transporters May Be Involved in Copper Resistance in <i>Metallosphaera sedula</i> DSM 5348<sup>T</sup>.","authors":"Matías Rivero,&nbsp;Constanza Torres-Paris,&nbsp;Rodrigo Muñoz,&nbsp;Ricardo Cabrera,&nbsp;Claudio A Navarro,&nbsp;Carlos A Jerez","doi":"10.1155/2018/5251061","DOIUrl":null,"url":null,"abstract":"<p><p>Polyphosphates (PolyP) are linear polymers of orthophosphate residues that have been proposed to participate in metal resistance in bacteria and archaea. In addition of having a CopA/CopB copper efflux system, the thermoacidophilic archaeon <i>Metallosphaera sedula</i> contains electron-dense PolyP-like granules and a putative exopolyphosphatase (PPX <i><sub>Msed</sub></i> , <i>Msed_0891</i>) and four presumed <i>pho84</i>-like phosphate transporters (<i>Msed_0846</i>, <i>Msed_0866</i>, <i>Msed_1094</i>, and <i>Msed_1512</i>) encoded in its genome. In the present report, the existence of a possible PolyP-based copper-resistance mechanism in <i>M. sedula</i> DSM 5348<sup>T</sup> was evaluated. <i>M. sedula</i> DSM 5348<sup>T</sup> accumulated high levels of phosphorous in the form of granules, and its growth was affected in the presence of 16 mM copper. PolyP levels were highly reduced after the archaeon was subjected to an 8 mM CuSO<sub>4</sub> shift. PPX <i><sub>Msed</sub></i> was purified, and the enzyme was found to hydrolyze PolyP <i>in vitro</i>. Essential residues for catalysis of PPX <i><sub>Msed</sub></i> were E111 and E113 as shown by a site-directed mutagenesis of the implied residues. Furthermore, <i>M. sedula ppx</i>, <i>pho84</i>-like, and <i>copTMA</i> genes were upregulated upon copper exposure, as determined by qRT-PCR analysis. The results obtained support the existence of a PolyP-dependent copper-resistance system that may be of great importance in the adaptation of this thermoacidophilic archaeon to its harsh environment.</p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":"2018 ","pages":"5251061"},"PeriodicalIF":2.3000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5251061","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaea-An International Microbiological Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2018/5251061","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 13

Abstract

Polyphosphates (PolyP) are linear polymers of orthophosphate residues that have been proposed to participate in metal resistance in bacteria and archaea. In addition of having a CopA/CopB copper efflux system, the thermoacidophilic archaeon Metallosphaera sedula contains electron-dense PolyP-like granules and a putative exopolyphosphatase (PPX Msed , Msed_0891) and four presumed pho84-like phosphate transporters (Msed_0846, Msed_0866, Msed_1094, and Msed_1512) encoded in its genome. In the present report, the existence of a possible PolyP-based copper-resistance mechanism in M. sedula DSM 5348T was evaluated. M. sedula DSM 5348T accumulated high levels of phosphorous in the form of granules, and its growth was affected in the presence of 16 mM copper. PolyP levels were highly reduced after the archaeon was subjected to an 8 mM CuSO4 shift. PPX Msed was purified, and the enzyme was found to hydrolyze PolyP in vitro. Essential residues for catalysis of PPX Msed were E111 and E113 as shown by a site-directed mutagenesis of the implied residues. Furthermore, M. sedula ppx, pho84-like, and copTMA genes were upregulated upon copper exposure, as determined by qRT-PCR analysis. The results obtained support the existence of a PolyP-dependent copper-resistance system that may be of great importance in the adaptation of this thermoacidophilic archaeon to its harsh environment.

无机多磷酸盐、外多磷酸酶和pho84样转运蛋白可能参与了seula Metallosphaera DSM 5348T的铜抗性。
聚磷酸盐(PolyP)是正磷酸盐残基的线性聚合物,已被提出参与细菌和古细菌的金属抗性。除了具有CopA/CopB铜外排系统外,嗜热酸性古菌Metallosphaera sedula在其基因组中还含有电子致密的聚磷样颗粒和一个推测的外聚磷酸酶(PPX Msed, Msed_0891)和四个推测的pho84样磷酸盐转运蛋白(Msed_0846, Msed_0866, Msed_1094和Msed_1512)。在本报告中,对M. sedula DSM 5348T中可能存在的基于polyp的铜抗性机制进行了评估。M. sedula DSM 5348T以颗粒形式积累了高水平的磷,其生长受到16 mM铜存在的影响。在古菌受到8 mM CuSO4位移后,水螅水平高度降低。对PPX Msed进行了纯化,发现该酶能在体外水解PolyP。催化PPX Msed的必要残基是E111和E113,这是由隐含残基的定点突变所显示的。此外,通过qRT-PCR分析发现,M. sedula ppx、pho84-like和copTMA基因在铜暴露后表达上调。这些结果支持了polyp依赖的耐铜系统的存在,这可能对这种嗜热酸性古菌适应恶劣环境具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: Archaea is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles dealing with all aspects of archaea, including environmental adaptation, enzymology, genetics and genomics, metabolism, molecular biology, molecular ecology, phylogeny, and ultrastructure. Bioinformatics studies and biotechnological implications of archaea will be considered. Published since 2002, Archaea provides a unique venue for exchanging information about these extraordinary prokaryotes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信