Phil R Kym, Xueqing Wang, Mathieu Pizzonero, Steven E Van der Plas
{"title":"Recent Progress in the Discovery and Development of Small-Molecule Modulators of CFTR.","authors":"Phil R Kym, Xueqing Wang, Mathieu Pizzonero, Steven E Van der Plas","doi":"10.1016/bs.pmch.2018.01.001","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is a genetic disorder driven by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. While different mutations lead to varying levels of disease severity, the most common CFTR F508del mutation leads to defects in protein stability, trafficking to the cell membrane and gating of chloride ions. Recently, advances in medicinal chemistry have led to the identification small-molecule drugs that result in significant clinical efficacy in improving lung function in CF patients. Multiple CFTR modulators are required to fix the various defects in the CFTR protein. Small-molecule potentiators increase the open-channel probability and improve the gating of ions through CFTR. Small-molecule correctors stabilize the protein fold of the mutant channel, facilitating protein maturation and translocation to the cellular membrane. Recent data suggest that triple-combination therapy consisting of a potentiator and two correctors that operate through distinct mechanisms will be required to deliver highly significant clinical efficacy for most CF patients. The progress in medicinal chemistry that has led to the identification of novel CFTR potentiators and correctors is presented in this chapter.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"57 1","pages":"235-276"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.pmch.2018.01.001","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.pmch.2018.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 24
Abstract
Cystic fibrosis (CF) is a genetic disorder driven by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. While different mutations lead to varying levels of disease severity, the most common CFTR F508del mutation leads to defects in protein stability, trafficking to the cell membrane and gating of chloride ions. Recently, advances in medicinal chemistry have led to the identification small-molecule drugs that result in significant clinical efficacy in improving lung function in CF patients. Multiple CFTR modulators are required to fix the various defects in the CFTR protein. Small-molecule potentiators increase the open-channel probability and improve the gating of ions through CFTR. Small-molecule correctors stabilize the protein fold of the mutant channel, facilitating protein maturation and translocation to the cellular membrane. Recent data suggest that triple-combination therapy consisting of a potentiator and two correctors that operate through distinct mechanisms will be required to deliver highly significant clinical efficacy for most CF patients. The progress in medicinal chemistry that has led to the identification of novel CFTR potentiators and correctors is presented in this chapter.
期刊介绍:
This series has a long established reputation for excellent coverage of almost every facet of Medicinal Chemistry and is one of the most respected and instructive sources of information on the subject. The latest volume certifies to the continuing success of a unique series reflecting current progress in a broadly developing field of science.