Investigating Contextual Cues as Indicators for EMA Delivery.

Varun Mishra, Kelly Caine, Byron Lowens, David Kotz, Sarah Lord
{"title":"Investigating Contextual Cues as Indicators for EMA Delivery.","authors":"Varun Mishra,&nbsp;Kelly Caine,&nbsp;Byron Lowens,&nbsp;David Kotz,&nbsp;Sarah Lord","doi":"10.1145/3123024.3124571","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we attempt to determine whether the contextual information of a participant can be used to predict whether the participant will respond to a particular Ecological Momentary Assessment (EMA) trigger. We use a publicly available dataset for our work, and find that by using basic contextual features about the participant's activity, conversation status, audio, and location, we can predict if an EMA triggered at a particular time will be answered with a precision of 0.647, which is significantly higher than a baseline precision of 0.41. Using this knowledge, the researchers conducting field studies can efficiently schedule EMAs and achieve higher response rates.</p>","PeriodicalId":90688,"journal":{"name":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","volume":"2017 ","pages":"935-940"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3123024.3124571","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3123024.3124571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this work, we attempt to determine whether the contextual information of a participant can be used to predict whether the participant will respond to a particular Ecological Momentary Assessment (EMA) trigger. We use a publicly available dataset for our work, and find that by using basic contextual features about the participant's activity, conversation status, audio, and location, we can predict if an EMA triggered at a particular time will be answered with a precision of 0.647, which is significantly higher than a baseline precision of 0.41. Using this knowledge, the researchers conducting field studies can efficiently schedule EMAs and achieve higher response rates.

调查情境线索作为EMA交付的指标。
在这项工作中,我们试图确定参与者的上下文信息是否可以用来预测参与者是否会对特定的生态瞬间评估(EMA)触发做出反应。我们在工作中使用了一个公开可用的数据集,并发现通过使用参与者的活动、对话状态、音频和位置的基本上下文特征,我们可以预测在特定时间触发的EMA是否会以0.647的精度得到回答,这明显高于0.41的基线精度。利用这些知识,进行现场研究的研究人员可以有效地安排EMAs,并获得更高的响应率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信