{"title":"Transcriptional Regulation of the First Cell Fate Decision.","authors":"Catherine Rhee, Jonghwan Kim, Haley O Tucker","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how the first cell fate decision has chosen is a fascinating biological question that was received consider attention over the last decade. Numerous transcription factors are required, and many have been shown to have essential roles in this process. Here we reexamine the function that transcription factors play primarily in the mouse-the model system most thoroughly examined in this process. We address how the first embryonic lineage is established and maintained, with a particular emphasis on subsequent trophectoderm development and the role of the recently established Arid3a transcription factor in this process. In addition, we review relevant aspects of embryonic stem cell reprogramming into trophoblast stem cells -the equivalent of the epiblast (inner cell mass) and the establishment of induced trophoblast stem cells-the <i>in vitro</i> equivalent of the trophectoderm.</p>","PeriodicalId":92238,"journal":{"name":"Journal of developmental biology & regenerative medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897107/pdf/nihms954948.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of developmental biology & regenerative medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how the first cell fate decision has chosen is a fascinating biological question that was received consider attention over the last decade. Numerous transcription factors are required, and many have been shown to have essential roles in this process. Here we reexamine the function that transcription factors play primarily in the mouse-the model system most thoroughly examined in this process. We address how the first embryonic lineage is established and maintained, with a particular emphasis on subsequent trophectoderm development and the role of the recently established Arid3a transcription factor in this process. In addition, we review relevant aspects of embryonic stem cell reprogramming into trophoblast stem cells -the equivalent of the epiblast (inner cell mass) and the establishment of induced trophoblast stem cells-the in vitro equivalent of the trophectoderm.