Kendra D Nyberg, Samuel L Bruce, Angelyn V Nguyen, Clara K Chan, Navjot K Gill, Tae-Hyung Kim, Erica K Sloan, Amy C Rowat
{"title":"Predicting cancer cell invasion by single-cell physical phenotyping.","authors":"Kendra D Nyberg, Samuel L Bruce, Angelyn V Nguyen, Clara K Chan, Navjot K Gill, Tae-Hyung Kim, Erica K Sloan, Amy C Rowat","doi":"10.1039/c7ib00222j","DOIUrl":null,"url":null,"abstract":"<p><p>The physical properties of cells are promising biomarkers for cancer diagnosis and prognosis. Here we determine the physical phenotypes that best distinguish human cancer cell lines, and their relationship to cell invasion. We use the high throughput, single-cell microfluidic method, quantitative deformability cytometry (q-DC), to measure six physical phenotypes including elastic modulus, cell fluidity, transit time, entry time, cell size, and maximum strain at rates of 102 cells per second. By training a k-nearest neighbor machine learning algorithm, we demonstrate that multiparameter analysis of physical phenotypes enhances the accuracy of classifying cancer cell lines compared to single parameters alone. We also discover a set of four physical phenotypes that predict invasion; using these four parameters, we generate the physical phenotype model of invasion by training a multiple linear regression model with experimental data from a set of human ovarian cancer cells that overexpress a panel of tumor suppressor microRNAs. We validate the model by predicting invasion based on measured physical phenotypes of breast and ovarian human cancer cell lines that are subject to genetic or pharmacologic perturbations. Taken together, our results highlight how physical phenotypes of single cells provide a biomarker to predict the invasion of cancer cells.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"10 4","pages":"218-231"},"PeriodicalIF":1.4000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/c7ib00222j","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/c7ib00222j","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 26
Abstract
The physical properties of cells are promising biomarkers for cancer diagnosis and prognosis. Here we determine the physical phenotypes that best distinguish human cancer cell lines, and their relationship to cell invasion. We use the high throughput, single-cell microfluidic method, quantitative deformability cytometry (q-DC), to measure six physical phenotypes including elastic modulus, cell fluidity, transit time, entry time, cell size, and maximum strain at rates of 102 cells per second. By training a k-nearest neighbor machine learning algorithm, we demonstrate that multiparameter analysis of physical phenotypes enhances the accuracy of classifying cancer cell lines compared to single parameters alone. We also discover a set of four physical phenotypes that predict invasion; using these four parameters, we generate the physical phenotype model of invasion by training a multiple linear regression model with experimental data from a set of human ovarian cancer cells that overexpress a panel of tumor suppressor microRNAs. We validate the model by predicting invasion based on measured physical phenotypes of breast and ovarian human cancer cell lines that are subject to genetic or pharmacologic perturbations. Taken together, our results highlight how physical phenotypes of single cells provide a biomarker to predict the invasion of cancer cells.
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.